
Lecture 1: Course Intro +
Propositional Logic

Or: How I Learned to Stop Worrying and Love
the Class

1 / 23

Welcome to CS 70!
What is this course?

▶ CS 70 is a math course.
▶ Focus on proofs and justifications
▶ Practice “mathematical thinking”

▶ Also an EECS course.
▶ Probability, Cryptography, Graphs, ...
▶ Applications throughout EECS

Why is this course?
▶ Learn to think critically and argue clearly
▶ See the building blocks of Computer Science

Adapting to this mindset can be hard — don’t be
discouraged, and do ask for help when you need it!

2 / 23

Staff Introductions
▶ Lecturers
▶ TAs
▶ Readers / Academic Interns

3 / 23

Logistics
Course website: eecs70.org

▶ Has homeworks, lecture notes, slides, etc.

Piazza: main avenue of communication
▶ Ask any questions here!
▶ Can make a private post or email

su19@eecs70.org for more personal questions
▶ Will also post announcements here

Homework 0 (logistics) already out, Homework 1
coming soon

4 / 23

A Word on Homeworks
Intended to help you internalize the material.
Previous grading system focused on getting all the
answers, even if you weren’t learning anything.
This summer, new grading policy to address this:

▶ Graded on putting “reasonable effort” into
each problem (see website for details)

▶ Translation: try all the problems, write down
your thought process and where exactly you
got stuck

▶ Readers still give detailed feedback
▶ Do still try your best on the homeworks —

they’re there for your benefit!
5 / 23

Lewis Carroll and Logic
(I) No one, who is going to a party, ever fails to

brush his or her hair.
(II) No one looks fascinating, if he or she is untidy.

(III) Opium-eaters have no self-command.
(IV) Everyone who has brushed his or her hair looks

fascinating.
(V) No one wears kid gloves, unless he or she is

going to a party.
(VI) A person is always untidy if he or she has no

self-command.
-Lewis Carroll, Symbolic Logic, 1896

Alice brushed her hair. What else do we know?
6 / 23

Propositions
A statement which is (unambiguously) true or false.
Basic building block of our logical system.
Examples:

▶ 2 + 2 = 4 (True)
▶ I had pizza for breakfast this morning (False)
▶ Even integers are the sum of two primes1 (???)

Not examples:
▶ A Pop-Tart is a sandwich (define sandwich)
▶ x + 2 = 7 (what is x?)
▶ 17 (not making a claim)
▶ Jazz is better than Rock (personal preference)
1This is known as the Goldbach Conjecture

7 / 23

Propositional Formulae
Can combine propositions with logical operators:

▶ P ∧ Q (Conjunction, “both P and Q”)
▶ P ∨ Q (Disjunction, “at least one of P or Q”)
▶ ¬P (Negation, “not P”)

String together for more complicated formulae:
▶ P ∧ Q ∧ R
▶ (P ∨ Q) ∧ (¬P)
▶ (P ∧ Q ∧ R) ∨ ((¬P) ∧ (¬Q) ∧ (¬R))

Use parentheses: P ∧ Q ∨ R is ambiguous!

8 / 23

Truth Tables
Would like to be able to compare formulae.
Ex: P ∨ Q vs ¬((¬P) ∧ (¬Q))

Idea: treat formulae as functions.
▶ Inputs are T/F values to each proposition
▶ Output is T/F value of overall formula
▶ Equivalent if have same truth table

For our example:
P Q ¬P ¬Q ¬((¬P) ∧ (¬Q)) P ∨ Q
F F T T F F
F T T F T T
T F F T T T
T T F F T T

9 / 23

Our First Theorem
Claim: Can express any truth table as a formula.2

Example (on two variables):
P Q φ
F F T
F T F
T F T
T T F
φ = ((¬P) ∧ (¬Q))∨(P ∧ (¬Q))

General Form:
▶ Disjunction (or) of many “and” clauses
▶ One clause for each satisfying assignment

φ not satisfied! Fix this.

φ not satisfied, which is good.

φ not satisfied! Fix this.

φ not satisfied, which is good.

2This means our language is fully expressive.
10 / 23

De Morgan’s Laws
How does negation interact with ∧ and ∨?

▶ ¬(P ∧ Q)
“It is not the case that both P and Q are true”

▶ (¬P) ∨ (¬Q)
“Either P or Q must be false”

Saying the same thing! ¬(P ∧ Q) ≡ (¬P) ∨ (¬Q)

Try the same thing with ∨!
▶ ¬(P ∨ Q)

“It cannot be that either P or Q is true”
▶ (¬P) ∧ (¬Q)

“Both P and Q are false”
Again the same! ¬(P ∨ Q) ≡ (¬P) ∧ (¬Q)

11 / 23

An Interesting Corollary
Claim: Only needs ∨ and ¬ to be fully expressive.
Why? Follow this procedure:

1. Start with any truth table
2. Previous theorem gives formula φ

3. Use De Morgan’s Laws to eliminate all ∧s
End with equivalent formula using only ¬ and ∨!

Can instead eliminate all ∨s, leaving only ∧ and ¬.

12 / 23

Implications
Even though we have enough to be fully expressive,
having more operators is much more convenient.
One important symbol: implication (=⇒)
P Q P =⇒ Q (¬P) ∨ Q
F F T T
F T T T
T F F F
T T T T

Read: “P implies Q” or “if P then Q”
Equivalent to (¬P) ∨ Q

13 / 23

Wait a Second!
Why is “F =⇒ T” true?
Think about “If it rains, the streets will be wet.”
What if a fire hydrant breaks?
Alternative is biconditional ⇐⇒ (“if and only if”)
P Q P ⇐⇒ Q
F F T
F T F
T F F
T T T
(P ⇐⇒ Q) ≡ ((P =⇒ Q) ∧ (Q =⇒ P))
Exercise: verify this with truth tables!

14 / 23

Converse and Contrapositive
How does P =⇒ Q compare to Q =⇒ P?
P Q P =⇒ Q Q =⇒ P
F F T T
F T T F
T F F T
T T T T

Not the same! Think “if it rains, the streets will be
wet” versus “if the streets are wet, it rained”.
If want logical equivalence, need contrapositive:
(¬Q) =⇒ (¬P)
Think “if the streets are not wet, it did not rain”.

15 / 23

A Well-Deserved Break
Listening to someone talk for an hour and a half is
tough. Will include a ∼4 minute break somewhere.
Good time to get to know your neighbors! Ask
questions, form study groups, or just, ya know, be
social :)
Today’s discussion question:
Does pineapple belong on pizza?

16 / 23

Quantifiers
For any natural number x, define two propositions:

▶ E(x) says that “x is even”
▶ O(x) says that “x is odd”

How to say “0 is either even or odd”?
Easy enough: E(0) ∨ O(0)
“Everything smaller than 3 is either even or odd”?
(E(0) ∨ O(0)) ∧ (E(1) ∨ O(1)) ∧ (E(2) ∨ O(2))
“All natural numbers are either even or odd”?
O no.
Requires an infinitely-long formula :(
Need new tools.

17 / 23

Quantifiers
∀ (“for all”) and ∃ (“there exists”)
Now write (∀n ∈ N)(E(n) ∨ O(n))
For a proposition P(x)3 and a set S, we say

▶ (∀x ∈ S)P(x) if P(x) holds for all x ∈ S
▶ (∃x ∈ S)P(x) if P(x) holds for some x ∈ S

If S clear from context or doesn’t matter4, may omit
Multiple free variables needs multiple quantifiers!
Example: (∀x ∈ N)(∃y ∈ N)(x = y)
Careful! ∀ and ∃ don’t commute with each other.

3Here, x is a variable allowed to appear in P, called a “free variable”
4or we’re just lazy

18 / 23

Negation and Quantifers
How does negation interact with quantifiers?

▶ ¬(∀x P(x))
“P(x) is not true for all x”

▶ ∃x (¬P(x))
“There is some x such that P(x) doesn’t hold”

Saying the same thing! ¬(∀x P(x)) ≡ ∃x (¬P(x))
What about with ∃?

▶ ¬(∃x P(x))
“There is no x satisfying P(x)”

▶ ∀x (¬P(x))
“P(x) is false for all x”

Again the same thing! ¬(∃x P(x)) ≡ ∀x (¬P(x))
19 / 23

An Alternate Intuition
Recall De Morgan’s Laws from earlier:

▶ ¬(P ∧ Q) ≡ (¬P) ∨ (¬Q)

▶ ¬(P ∨ Q) ≡ (¬P) ∧ (¬Q)

∀ is like a conjunction (∧)
(∀x ∈ N)P(x) is like P(0) ∧ P(1) ∧ P(2) ∧ ...

∃ is like a disjunction (∨)
(∃x ∈ N)P(x) is like P(0) ∨ P(1) ∨ P(2) ∨ ...

¬ interacts with ∀ and ∃ like with ∧ and ∨!

20 / 23

Lewis Carroll 2: Electric Boogaloo
Recall:
(I) No one, who is going to a party, ever fails to

brush his or her hair. P(x) =⇒ B(x)
(II) No one looks fascinating, if he or she is untidy.

U(x) =⇒ (¬F(x))
(III) Opium-eaters have no self-command.

O(x) =⇒ (¬S(x))
(IV) Everyone who has brushed his or her hair looks

fascinating. B(x) =⇒ F(x)
(V) No one wears kid gloves, unless he or she is

going to a party. K(x) =⇒ P(x)
(VI) A person is always untidy if he or she has no

self-command. (¬S(x)) =⇒ U(x)
Translate this to propositional logic!

21 / 23

(Lewis Carroll 2: Electric Boogaloo) 2

(I) P(x) =⇒ B(x)
(III) O(x) =⇒ (¬S(x))
(V) K(x) =⇒ P(x)

(II) U(x) =⇒ (¬F(x))
(IV) B(x) =⇒ F(x)
(VI) (¬S(x)) =⇒ U(x)

Alice brushed her hair. What else do we know?

B(x) IV
=⇒ F(x) II(c)

=⇒ ¬U(x) VI(c)
=⇒ S(x) III(c)

=⇒ ¬O(x)
So Alice looks fascinating, is not untidy, has self
control, and is not an opium-eater.
Is she going to a party? Not enough information!

22 / 23

Fin
Next time: proofs!

23 / 23

