## Lecture 10: Error Correcting Codes

 WCat Can You 2o Cith A Noisy ChahDel?
## Sema-Five?

Suppose I am trying to communicate via semaphore:


## Sema-Five?

Suppose I am trying to communicate via semaphore:


What if my recipient misses some letters?

## Sema-Five?

Suppose I am trying to communicate via semaphore:


What if my recipient misses some letters?
Less silly: deal with dropped internet packets

## Problem Statement

Formally: have message in $n$ parts $m_{1}, \ldots, m_{n}$
Channel may drop up to $k$ packets sent How many packets needed to ensure receipt?

## Problem Statement

Formally: have message in $n$ parts $m_{1}, \ldots, m_{n}$
Channel may drop up to $k$ packets sent How many packets needed to ensure receipt?

Naïve idea: repetition coding

- Repeat message "enough times"


## Problem Statement

Formally: have message in $n$ parts $m_{1}, \ldots, m_{n}$
Channel may drop up to $k$ packets sent How many packets needed to ensure receipt?
Naïve idea: repetition coding

- Repeat message "enough times"

How many reps required to guarantee receipt?

## Problem Statement

Formally: have message in $n$ parts $m_{1}, \ldots, m_{n}$
Channel may drop up to $k$ packets sent How many packets needed to ensure receipt?
Naïve idea: repetition coding

- Repeat message "enough times"

How many reps required to guarantee receipt?
Could drop first packet every time! Need $k+1$ repetitions to be safe

## Problem Statement

Formally: have message in $n$ parts $m_{1}, \ldots, m_{n}$
Channel may drop up to $k$ packets sent How many packets needed to ensure receipt?

Naïve idea: repetition coding

- Repeat message "enough times"

How many reps required to guarantee receipt?
Could drop first packet every time! Need $k+1$ repetitions to be safe

For $n$ packet message, send $n(k+1)$ packets

## Problem Statement

Formally: have message in $n$ parts $m_{1}, \ldots, m_{n}$
Channel may drop up to $k$ packets sent How many packets needed to ensure receipt?

Naïve idea: repetition coding

- Repeat message "enough times"

How many reps required to guarantee receipt?
Could drop first packet every time! Need $k+1$ repetitions to be safe

For $n$ packet message, send $n(k+1)$ packets Can we do better?

## A Better Encoding

Claim: Can get away with $n+k$ packets

## A Better Encoding

Claim: Can get away with $n+k$ packets How?

## A Better Encoding

Claim: Can get away with $n+k$ packets How? Using polynomials!

## A Better Encoding

Claim: Can get away with $n+k$ packets
How? Using polynomials!
Idea: Take prime $q$ st $q>n+k,>$ largest message Encode message as polynomial in $G F(q)$

## A Better Encoding

Claim: Can get away with $n+k$ packets
How? Using polynomials!
Idea: Take prime $q$ st $q>n+k,>$ largest message Encode message as polynomial in $G F(q)$
Interpolate poly $p(x)$ st $p(i)=m_{i}$ for $1 \leq i \leq n$
Send $p(1), p(2), \ldots, p(n+k)$

## Recovery

Claim: With $\leq k$ erasures, recovery always possible

## Recovery

Claim: With $\leq k$ erasures, recovery always possible Proof:

- Suppose receive $n$ points
- Interpolate poly $p^{\prime}(x)$ through them


## Recovery

Claim: With $\leq k$ erasures, recovery always possible

## Proof:

- Suppose receive $n$ points
- Interpolate poly $p^{\prime}(x)$ through them
- $\operatorname{deg}(p)=\operatorname{deg}\left(p^{\prime}\right)=n-1$
- $p$ and $p^{\prime}$ agree on $n$ points


## Recovery

Claim: With $\leq k$ erasures, recovery always possible

## Proof:

- Suppose receive $n$ points
- Interpolate poly $p^{\prime}(x)$ through them
- $\operatorname{deg}(p)=\operatorname{deg}\left(p^{\prime}\right)=n-1$
- $p$ and $p^{\prime}$ agree on $n$ points
- So $p=p^{\prime}$


## Recovery

Claim: With $\leq k$ erasures, recovery always possible

## Proof:

- Suppose receive $n$ points
- Interpolate poly $p^{\prime}(x)$ through them
- $\operatorname{deg}(p)=\operatorname{deg}\left(p^{\prime}\right)=n-1$
- $p$ and $p^{\prime}$ agree on $n$ points
- So $p=p^{\prime}$
- Thus $m_{i}=p^{\prime}(i)$ for $1 \leq i \leq n$


## Enconding Example

Want to send $m=(4,0,5)$, protect for 2 erasures

## Enconding Example

Want to send $m=(4,0,5)$, protect for 2 erasures Interpolate polynomial modulo 7:

## Enconding Example

Want to send $m=(4,0,5)$, protect for 2 erasures Interpolate polynomial modulo 7:
$\Delta_{1}(x)=(x-2)(x-3)[(1-2)(1-3)]^{-1}$
$\equiv 4\left(x^{2}-5 x+6\right) \equiv 4 x^{2}+x+3(\bmod 7)$

## Enconding Example

Want to send $m=(4,0,5)$, protect for 2 erasures Interpolate polynomial modulo 7:
$\Delta_{1}(x)=(x-2)(x-3)[(1-2)(1-3)]^{-1}$
$\equiv 4\left(x^{2}-5 x+6\right) \equiv 4 x^{2}+x+3(\bmod 7)$
Don't need to calculate $\Delta_{2}(x)$ !

## Enconding Example

Want to send $m=(4,0,5)$, protect for 2 erasures Interpolate polynomial modulo 7:
$\Delta_{1}(x)=(x-2)(x-3)[(1-2)(1-3)]^{-1}$
$\equiv 4\left(x^{2}-5 x+6\right) \equiv 4 x^{2}+x+3(\bmod 7)$
Don't need to calculate $\Delta_{2}(x)$ !
$\Delta_{3}(x)=(x-1)(x-2)[(3-1)(3-2)]^{-1}$
$\equiv 4\left(x^{2}-3 x+2\right) \equiv 4 x^{2}+2 x+1(\bmod 7)$

## Enconding Example

Want to send $m=(4,0,5)$, protect for 2 erasures Interpolate polynomial modulo 7:
$\Delta_{1}(x)=(x-2)(x-3)[(1-2)(1-3)]^{-1}$
$\equiv 4\left(x^{2}-5 x+6\right) \equiv 4 x^{2}+x+3(\bmod 7)$
Don't need to calculate $\Delta_{2}(x)$ !
$\Delta_{3}(x)=(x-1)(x-2)[(3-1)(3-2)]^{-1}$
$\equiv 4\left(x^{2}-3 x+2\right) \equiv 4 x^{2}+2 x+1(\bmod 7)$
$p(x)=4 \Delta_{1}(x)+5 \Delta_{3}(x) \equiv x^{2}+3(\bmod 7)$

## Enconding Example

Want to send $m=(4,0,5)$, protect for 2 erasures Interpolate polynomial modulo 7:
$\Delta_{1}(x)=(x-2)(x-3)[(1-2)(1-3)]^{-1}$
$\equiv 4\left(x^{2}-5 x+6\right) \equiv 4 x^{2}+x+3(\bmod 7)$
Don't need to calculate $\Delta_{2}(x)$ !
$\Delta_{3}(x)=(x-1)(x-2)[(3-1)(3-2)]^{-1}$
$\equiv 4\left(x^{2}-3 x+2\right) \equiv 4 x^{2}+2 x+1(\bmod 7)$
$p(x)=4 \Delta_{1}(x)+5 \Delta_{3}(x) \equiv x^{2}+3(\bmod 7)$
Send $(p(1), p(2), p(3), p(4), p(5))=(4,0,5,5,0)$

## Recovery Example

Sent: $(4,0,5,5,0)$; Received: $(-, 0,5,5,-)$

## Recovery Example

Sent: $(4,0,5,5,0)$; Received: $(-, 0,5,5,-)$ Need to interpolate!

## Recovery Example

Sent: $(4,0,5,5,0)$; Received: $(-, 0,5,5,-)$ Need to interpolate!

Don't need $\Delta_{2}(x)$ !

## Recovery Example

Sent: $(4,0,5,5,0)$; Received: $(-, 0,5,5,-)$ Need to interpolate!
Don't need $\Delta_{2}(x)$ !
$\Delta_{3}(x)=(x-2)(x-4)[(3-2)(3-4)]^{-1}$
$\equiv 6\left(x^{2}-6 x+8\right) \equiv 6 x^{2}+6 x+6$

## Recovery Example

Sent: $(4,0,5,5,0)$; Received: $(-, 0,5,5,-)$ Need to interpolate!
Don't need $\Delta_{2}(x)$ !
$\Delta_{3}(x)=(x-2)(x-4)[(3-2)(3-4)]^{-1}$
$\equiv 6\left(x^{2}-6 x+8\right) \equiv 6 x^{2}+6 x+6$
$\Delta_{4}(x)=(x-2)(x-3)[(4-2)(4-3)]^{-1}$
$\equiv 4\left(x^{2}-5 x+6\right) \equiv 4 x^{2}+x+3$

## Recovery Example

Sent: $(4,0,5,5,0)$; Received: $(-, 0,5,5,-)$ Need to interpolate!
Don't need $\Delta_{2}(x)$ !
$\Delta_{3}(x)=(x-2)(x-4)[(3-2)(3-4)]^{-1}$
$\equiv 6\left(x^{2}-6 x+8\right) \equiv 6 x^{2}+6 x+6$
$\Delta_{4}(x)=(x-2)(x-3)[(4-2)(4-3)]^{-1}$
$\equiv 4\left(x^{2}-5 x+6\right) \equiv 4 x^{2}+x+3$
Interpolate $p^{\prime}(x)=5 \Delta_{3}(x)+5 \Delta_{4}(x) \equiv x^{2}+3$

## Recovery Example

Sent: $(4,0,5,5,0)$; Received: $(-, 0,5,5,-)$
Need to interpolate!
Don't need $\Delta_{2}(x)$ !
$\Delta_{3}(x)=(x-2)(x-4)[(3-2)(3-4)]^{-1}$
$\equiv 6\left(x^{2}-6 x+8\right) \equiv 6 x^{2}+6 x+6$
$\Delta_{4}(x)=(x-2)(x-3)[(4-2)(4-3)]^{-1}$
$\equiv 4\left(x^{2}-5 x+6\right) \equiv 4 x^{2}+x+3$
Interpolate $p^{\prime}(x)=5 \Delta_{3}(x)+5 \Delta_{4}(x) \equiv x^{2}+3$
Evaluate for message: $\left(p^{\prime}(1), p^{\prime}(2), p^{\prime}(3)\right)=(4,0,5)$

## Optimality

Claim: Can't guarantee success $w /<n+k$ packets

## Optimality

Claim: Can't guarantee success $w /<n+k$ packets Proof:

- May send one of two messages:

$$
\begin{aligned}
& -\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}\right) \text { or } \\
& -\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}^{\prime}\right)
\end{aligned}
$$

## Optimality

Claim: Can't guarantee success $w /<n+k$ packets Proof:

- May send one of two messages:

$$
\begin{aligned}
& -\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}\right) \text { or } \\
& -\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}^{\prime}\right)
\end{aligned}
$$

- Channel drops $n$th packet and all extras


## Optimality

Claim: Can't guarantee success $w /<n+k$ packets
Proof:

- May send one of two messages:

$$
\begin{aligned}
& -\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}\right) \text { or } \\
& -\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}^{\prime}\right)
\end{aligned}
$$

- Channel drops $n$th packet and all extras
- Which message was sent?


## Optimality

Claim: Can't guarantee success $w /<n+k$ packets
Proof:

- May send one of two messages:

$$
\begin{aligned}
& -\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}\right) \text { or } \\
& =\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}^{\prime}\right)
\end{aligned}
$$

- Channel drops $n$th packet and all extras
- Which message was sent?
- Impossible to know!


## COrrupt1on ErrOrs

More difficult: what if packets are corrupted?

## COrrupt1on Err0rs

More difficult: what if packets are corrupted? Don't know which packets are wrong!

## COrrupt1on Err0rs

More difficult: what if packets are corrupted?
Don't know which packets are wrong!
Claim: Previous encoding not good enough

## COrrupt1on ErrOrs

More difficult: what if packets are corrupted?
Don't know which packets are wrong!
Claim: Previous encoding not good enough Proof:

- Again, two possible original messages:

$$
\begin{aligned}
& =\left(m_{1}, \ldots, m_{n-1}, m_{n}\right) \text { or } \\
& -\left(m_{1}, \ldots, m_{n-1}, m_{n}^{\prime}\right)
\end{aligned}
$$

## COrrupt1on Err0rs

More difficult: what if packets are corrupted?
Don't know which packets are wrong!
Claim: Previous encoding not good enough

## Proof:

- Again, two possible original messages:

$$
\begin{aligned}
& -\left(m_{1}, \ldots, m_{n-1}, m_{n}\right) \text { or } \\
& =\left(m_{1}, \ldots, m_{n-1}, m_{n}^{\prime}\right)
\end{aligned}
$$

- First $n$ rec'd match 1st, but next $k$ match 2nd


## COrrupt1on ErrOrs

More difficult: what if packets are corrupted?
Don't know which packets are wrong!
Claim: Previous encoding not good enough Proof:

- Again, two possible original messages:

$$
\begin{aligned}
& -\left(m_{1}, \ldots, m_{n-1}, m_{n}\right) \text { or } \\
& =\left(m_{1}, \ldots, m_{n-1}, m_{n}^{\prime}\right)
\end{aligned}
$$

- First $n$ rec'd match 1st, but next $k$ match 2nd
- Which message was sent?


## COrrupt1on ErrOrs

More difficult: what if packets are corrupted?
Don't know which packets are wrong!
Claim: Previous encoding not good enough Proof:

- Again, two possible original messages:

$$
\begin{aligned}
& -\left(m_{1}, \ldots, m_{n-1}, m_{n}\right) \text { or } \\
& =\left(m_{1}, \ldots, m_{n-1}, m_{n}^{\prime}\right)
\end{aligned}
$$

- First $n$ rec'd match 1st, but next $k$ match 2nd
- Which message was sent?
- Impossible to know!


## COrrupt1on ErrOrs

More difficult: what if packets are corrupted?
Don't know which packets are wrong!
Claim: Previous encoding not good enough
Proof:

- Again, two possible original messages:

$$
\begin{aligned}
& -\left(m_{1}, \ldots, m_{n-1}, m_{n}\right) \text { or } \\
& -\left(m_{1}, \ldots, m_{n-1}, m_{n}^{\prime}\right)
\end{aligned}
$$

- First $n$ rec'd match 1st, but next $k$ match 2nd
- Which message was sent?
- Impossible to know!

Note: works for any padding by $k$ packets

## NEED MOAR PACKETS

Theorem: For $k$ corruptions, need $\geq n+2 k$ packets

## NEED MOAR PACKETS

Theorem: For $k$ corruptions, need $\geq n+2 k$ packets
Suppose only send $2 k-1$ extra packets

## NEED MOAR PACKETS

Theorem: For $k$ corruptions, need $\geq n+2 k$ packets
Suppose only send $2 k-1$ extra packets
Consider two possible messages:

$$
\begin{aligned}
& \left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}, e_{1}, \ldots, e_{k-1}, e_{k}, \ldots, e_{2 k-1}\right) \\
& \left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}^{\prime}, e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, e_{k}^{\prime}, \ldots, e_{2 k-1}^{\prime}\right)
\end{aligned}
$$

## NEED MOAR PACKETS

Theorem: For $k$ corruptions, need $\geq n+2 k$ packets
Suppose only send $2 k-1$ extra packets
Consider two possible messages:

$$
\begin{gathered}
\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}, e_{1}, \ldots, e_{k-1}, e_{k}, \ldots, e_{2 k-1}\right) \\
\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}^{\prime}, e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, e_{k}^{\prime}, \ldots, e_{2 k-1}^{\prime}\right) \\
\downarrow \\
\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}, e_{1}, \ldots, e_{k-1}, e_{k}^{\prime}, \ldots, e_{2 k-1}^{\prime}\right)
\end{gathered}
$$

## NEED MOAR PACKETS

Theorem: For $k$ corruptions, need $\geq n+2 k$ packets
Suppose only send $2 k-1$ extra packets
Consider two possible messages:

$$
\begin{gathered}
\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}, e_{1}, \ldots, e_{k-1}, e_{k}, \ldots, e_{2 k-1}\right) \\
\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}^{\prime}, e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, e_{k}^{\prime}, \ldots, e_{2 k-1}^{\prime}\right) \\
\downarrow \\
\left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}, e_{1}, \ldots, e_{k-1}, e_{k}^{\prime}, \ldots, e_{2 k-1}^{\prime}\right)
\end{gathered}
$$

## NEED MOAR PACKETS

Theorem: For $k$ corruptions, need $\geq n+2 k$ packets
Suppose only send $2 k-1$ extra packets
Consider two possible messages:

$$
\begin{aligned}
& \left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}, e_{1}, \ldots, e_{k-1}, e_{k}, \ldots, e_{2 k-1}\right) \\
& \left(m_{1}, m_{2}, \ldots, m_{n-1}, \frac{\left.m_{n}^{\prime}, e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, e_{k}^{\prime}, \ldots, e_{2 k-1}^{\prime}\right)}{\downarrow}\right. \\
& \left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}, e_{1}, \ldots, e_{k-1}, e_{k}^{\prime}, \ldots, e_{2 k-1}^{\prime}\right)
\end{aligned}
$$

## NEED MOAR PACKETS

Theorem: For $k$ corruptions, need $\geq n+2 k$ packets
Suppose only send $2 k-1$ extra packets
Consider two possible messages:

$$
\begin{aligned}
& \left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}, e_{1}, \ldots, e_{k-1}, e_{k}, \ldots, e_{2 k-1}\right) \\
& \left(m_{1}, m_{2}, \ldots, m_{n-1}, \frac{\left.m_{n}^{\prime}, e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, e_{k}^{\prime}, \ldots, e_{2 k-1}^{\prime}\right)}{\downarrow}\right. \\
& \left(m_{1}, m_{2}, \ldots, m_{n-1}, m_{n}, e_{1}, \ldots, e_{k-1}, e_{k}^{\prime}, \ldots, e_{2 k-1}^{\prime}\right)
\end{aligned}
$$

Don't know which message originally sent!

## Relaaaaax

Take a 4 minute break!

## Relaaaaax

Take a 4 minute break!
Today's Discussion Question:
What's your strangest family tradition?

## Corruption Recovery

Theorem: If use previous encoding with $2 k$ extra packets, can recover from $k$ corruptions.

## Corruption Recovery

Theorem: If use previous encoding with $2 k$ extra packets, can recover from $k$ corruptions.

How?

## Corruption Recovery

Theorem: If use previous encoding with $2 k$ extra packets, can recover from $k$ corruptions.

How? Find deg $n-1$ poly through $n+k$ points

## Corruption Recovery

Theorem: If use previous encoding with $2 k$ extra packets, can recover from $k$ corruptions.

How? Find deg $n-1$ poly through $n+k$ points
Claim: Such a poly exists

## Corruption Recovery

Theorem: If use previous encoding with $2 k$ extra packets, can recover from $k$ corruptions.

How? Find deg $n-1$ poly through $n+k$ points
Claim: Such a poly exists

- Original poly through $n+k$ uncorrupted points


## Corruption Recovery

Theorem: If use previous encoding with $2 k$ extra packets, can recover from $k$ corruptions.

How? Find deg $n-1$ poly through $n+k$ points
Claim: Such a poly exists

- Original poly through $n+k$ uncorrupted points

Claim: Only one such poly

## Corruption Recovery

Theorem: If use previous encoding with $2 k$ extra packets, can recover from $k$ corruptions.

How? Find deg $n-1$ poly through $n+k$ points
Claim: Such a poly exists

- Original poly through $n+k$ uncorrupted points

Claim: Only one such poly

- For any $n+k$ points, at least $n$ uncorrupted
- Those $n$ define the original polynomial


## Efficiency?

How long does it take to recover?

## Efficiency?

How long does it take to recover?
Naïvely, need to try all possible sets of $k$ corruptions

## Efficiency?

How long does it take to recover?
Naïvely, need to try all possible sets of $k$ corruptions $\binom{n+2 k}{k} \approx\left(\frac{n+2 k}{k}\right)^{k}$ possibilities - much too slow

## Efficiency?

How long does it take to recover?
Naïvely, need to try all possible sets of $k$ corruptions $\binom{n+2 k}{k} \approx\left(\frac{n+2 k}{k}\right)^{k}$ possibilities - much too slow
State-of-the-art for over 25 years! (1960-1986)

## Efficiency?

How long does it take to recover?
Naïvely, need to try all possible sets of $k$ corruptions $\binom{n+2 k}{k} \approx\left(\frac{n+2 k}{k}\right)^{k}$ possibilities - much too slow
State-of-the-art for over 25 years! (1960-1986)


Elwyn Berlekamp


Lloyd Welch

## Efficiency?

How long does it take to recover?
Naïvely, need to try all possible sets of $k$ corruptions $\binom{n+2 k}{k} \approx\left(\frac{n+2 k}{k}\right)^{k}$ possibilities - much too slow
State-of-the-art for over 25 years! (1960-1986)


Elwyn Berlekamp


Lloyd Welch

## Berlekamp-Welch Recovery

Main idea: have (unknown) error-location poly

$$
e(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)
$$

## Berlekamp-Welch Recovery

Main idea: have (unknown) error-location poly

$$
e(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)
$$

If can find this poly, can fix corruptions!

## Berlekamp-Welch Recovery

Main idea: have (unknown) error-location poly
$e(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)$
If can find this poly, can fix corruptions!
Define (unknown) $q(x)=p(x) e(x)$ to help solve

## Berlekamp-Welch Recovery

Main idea: have (unknown) error-location poly
$e(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)$
If can find this poly, can fix corruptions!
Define (unknown) $q(x)=p(x) e(x)$ to help solve
Claim: $q(i)=r_{i} e(i)$ for all $i$

## Berlekamp-Welch Recovery

Main idea: have (unknown) error-location poly
$e(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)$
If can find this poly, can fix corruptions!
Define (unknown) $q(x)=p(x) e(x)$ to help solve
Claim: $q(i)=r_{i} e(i)$ for all $i$

- If $i$ error, both sides zero
- Otherwise $r_{i}=p(i)$, so true by definition


## Berlekamp-Welch Recovery

Main idea: have (unknown) error-location poly
$e(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)$
If can find this poly, can fix corruptions!
Define (unknown) $q(x)=p(x) e(x)$ to help solve
Claim: $q(i)=r_{i} e(i)$ for all $i$

- If $i$ error, both sides zero
- Otherwise $r_{i}=p(i)$, so true by definition

Gives $n+2 k$ equations known to be true! Unknowns are coefficients for $q(x)$ and $e(x)$

## Berlekamp-Welch: A Closer Look

What does $q(x)$ look like?

## Berlekamp-Welch: A Closer Look

What does $q(x)$ look like?
$\operatorname{deg}(p)=n-1, \operatorname{deg}(e)=k$, so $\operatorname{deg}(q)=n+k-1$

## Berlekamp-Welch: A Closer Look

What does $q(x)$ look like?
$\operatorname{deg}(p)=n-1, \operatorname{deg}(e)=k, \operatorname{so} \operatorname{deg}(q)=n+k-1$
$q(x)=a_{n+k-1} x^{n+k-1}+\ldots+a_{1} x+a_{0}$

## Berlekamp-Welch: A Closer Look

What does $q(x)$ look like?
$\operatorname{deg}(p)=n-1, \operatorname{deg}(e)=k, \operatorname{so} \operatorname{deg}(q)=n+k-1$
$q(x)=a_{n+k-1} x^{n+k-1}+\ldots+a_{1} x+a_{0}$
What does $e(x)$ look like?

## Berlekamp-Welch: A Closer Look

What does $q(x)$ look like?
$\operatorname{deg}(p)=n-1, \operatorname{deg}(e)=k, \operatorname{so} \operatorname{deg}(q)=n+k-1$
$q(x)=a_{n+k-1} x^{n+k-1}+\ldots+a_{1} x+a_{0}$
What does $e(x)$ look like?
$e(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)$, so degree $k$

## Berlekamp-Welch: A Closer Look

What does $q(x)$ look like?
$\operatorname{deg}(p)=n-1, \operatorname{deg}(e)=k, \operatorname{so} \operatorname{deg}(q)=n+k-1$
$q(x)=a_{n+k-1} x^{n+k-1}+\ldots+a_{1} x+a_{0}$
What does $e(x)$ look like?
$e(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)$, so degree $k$ $e(x)=b_{k} x^{k}+\ldots+b_{1} x+b_{0}$

## Berlekamp-Welch: A Closer Look

What does $q(x)$ look like?
$\operatorname{deg}(p)=n-1, \operatorname{deg}(e)=k, \operatorname{so} \operatorname{deg}(q)=n+k-1$
$q(x)=a_{n+k-1} x^{n+k-1}+\ldots+a_{1} x+a_{0}$
What does $e(x)$ look like?
$e(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)$, so degree $k$ $e(x)=b_{k} x^{k}+\ldots+b_{1} x+b_{0}$
But wait! $b_{k}=1$ for any $e_{1}, \ldots, e_{k}$ !
So $e(x)=x^{k}+b_{k-1} x^{k-1}+\ldots+b_{1} x+b_{0}$

## Berlekamp-Welch: A Closer Look

What does $q(x)$ look like?
$\operatorname{deg}(p)=n-1, \operatorname{deg}(e)=k, \operatorname{so} \operatorname{deg}(q)=n+k-1$
$q(x)=a_{n+k-1} x^{n+k-1}+\ldots+a_{1} x+a_{0}$
What does $e(x)$ look like?
$e(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)$, so degree $k$ $e(x)=b_{k} x^{k}+\ldots+b_{1} x+b_{0}$
But wait! $b_{k}=1$ for any $e_{1}, \ldots, e_{k}$ !
So $e(x)=x^{k}+b_{k-1} x^{k-1}+\ldots+b_{1} x+b_{0}$
Have $n+k$ unknowns from $q, k$ from $e$ Matches $n+2 k$ linear eqns of the form $q(i)=r_{i} e(i)$

## Berlekamp-Welch: A Closer Look

What does $q(x)$ look like?
$\operatorname{deg}(p)=n-1, \operatorname{deg}(e)=k, \operatorname{so} \operatorname{deg}(q)=n+k-1$
$q(x)=a_{n+k-1} x^{n+k-1}+\ldots+a_{1} x+a_{0}$
What does $e(x)$ look like?
$e(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)$, so degree $k$ $e(x)=b_{k} x^{k}+\ldots+b_{1} x+b_{0}$
But wait! $b_{k}=1$ for any $e_{1}, \ldots, e_{k}$ !
So $e(x)=x^{k}+b_{k-1} x^{k-1}+\ldots+b_{1} x+b_{0}$
Have $n+k$ unknowns from $q, k$ from $e$ Matches $n+2 k$ linear eqns of the form $q(i)=r_{i} e(i)$
Linear Algebra: can find $q$, $e$, so have $p(x)=\frac{q(x)}{e(x)}$

## Berlekamp-Welch: Example

Want to send length 2 message, have 1 corruption Receive messages $(1,3),(2,1),(3,4),(4,0) \bmod 7$

## Berlekamp-Welch: Example

Want to send length 2 message, have 1 corruption Receive messages $(1,3),(2,1),(3,4),(4,0) \bmod 7$

$$
q(x)=a_{2} x^{2}+a_{1} x+a_{0}, e(x)=x+b_{0}
$$

## Berlekamp-Welch: Example

Want to send length 2 message, have 1 corruption Receive messages $(1,3),(2,1),(3,4),(4,0) \bmod 7$
$q(x)=a_{2} x^{2}+a_{1} x+a_{0}, e(x)=x+b_{0}$
Eq 1: $q(1)=r_{1} e(1)$, so $a_{2}+a_{1}+a_{0}=3\left(1+b_{0}\right)$

## Berlekamp-Welch: Example

Want to send length 2 message, have 1 corruption Receive messages $(1,3),(2,1),(3,4),(4,0) \bmod 7$
$q(x)=a_{2} x^{2}+a_{1} x+a_{0}, e(x)=x+b_{0}$
Eq 1: $q(1)=r_{1} e(1)$, so $a_{2}+a_{1}+a_{0}=3\left(1+b_{0}\right)$
Eq 2: $q(2)=r_{2} e(2)$, so $4 a_{2}+2 a_{1}+a_{0}=1\left(2+b_{0}\right)$

## Berlekamp-Welch: Example

Want to send length 2 message, have 1 corruption Receive messages $(1,3),(2,1),(3,4),(4,0) \bmod 7$
$q(x)=a_{2} x^{2}+a_{1} x+a_{0}, e(x)=x+b_{0}$
Eq 1: $q(1)=r_{1} e(1)$, so $a_{2}+a_{1}+a_{0}=3\left(1+b_{0}\right)$
Eq 2: $q(2)=r_{2} e(2)$, so $4 a_{2}+2 a_{1}+a_{0}=1\left(2+b_{0}\right)$
Eq 3: $q(3)=r_{3} e(3)$, so $9 a_{2}+3 a_{1}+a_{0}=4\left(3+b_{0}\right)$

## Berlekamp-Welch: Example

Want to send length 2 message, have 1 corruption Receive messages $(1,3),(2,1),(3,4),(4,0) \bmod 7$
$q(x)=a_{2} x^{2}+a_{1} x+a_{0}, e(x)=x+b_{0}$
Eq 1: $q(1)=r_{1} e(1)$, so $a_{2}+a_{1}+a_{0}=3\left(1+b_{0}\right)$
Eq 2: $q(2)=r_{2} e(2)$, so $4 a_{2}+2 a_{1}+a_{0}=1\left(2+b_{0}\right)$
Eq 3: $q(3)=r_{3} e(3)$, so $9 a_{2}+3 a_{1}+a_{0}=4\left(3+b_{0}\right)$
Eq 4: $q(4)=r_{4} e(4)$, so $16 a_{2}+4 a_{1}+a_{0}=0\left(4+b_{0}\right)$

## Berlekamp-Welch: Example

Want to send length 2 message, have 1 corruption Receive messages $(1,3),(2,1),(3,4),(4,0) \bmod 7$
$q(x)=a_{2} x^{2}+a_{1} x+a_{0}, e(x)=x+b_{0}$
Eq 1: $q(1)=r_{1} e(1)$, so $a_{2}+a_{1}+a_{0}=3\left(1+b_{0}\right)$
Eq 2: $q(2)=r_{2} e(2)$, so $4 a_{2}+2 a_{1}+a_{0}=1\left(2+b_{0}\right)$
Eq 3: $q(3)=r_{3} e(3)$, so $9 a_{2}+3 a_{1}+a_{0}=4\left(3+b_{0}\right)$
Eq 4: $q(4)=r_{4} e(4)$, so $16 a_{2}+4 a_{1}+a_{0}=0\left(4+b_{0}\right)$
Note: all eqns modulo 7, so can shrink some nums

## (Berlekamp-Welch: Example): Continued

Simplify equations mod 7 , move all variables to left:
$a_{2}+a_{1}+a_{0}-3 b_{0}=3$
$4 a_{2}+2 a_{1}+a_{0}-b_{0}=2$
$2 a_{2}+3 a_{1}+a_{0}-4 b_{0}=5$
$2 a_{2}+4 a_{1}+a_{0}=0$

## (Berlekamp-Welch: Example): Continued

Simplify equations mod 7 , move all variables to left: $a_{2}+a_{1}+a_{0}-3 b_{0}=3$
$4 a_{2}+2 a_{1}+a_{0}-b_{0}=2$
$2 a_{2}+3 a_{1}+a_{0}-4 b_{0}=5$
$2 a_{2}+4 a_{1}+a_{0}=0$
Can use Gaussian Elimination $(\bmod 7)$ to solve

## (Berlekamp-Welch: Example): Continued

Simplify equations mod 7 , move all variables to left: $a_{2}+a_{1}+a_{0}-3 b_{0}=3$
$4 a_{2}+2 a_{1}+a_{0}-b_{0}=2$
$2 a_{2}+3 a_{1}+a_{0}-4 b_{0}=5$
$2 a_{2}+4 a_{1}+a_{0}=0$
Can use Gaussian Elimination $(\bmod 7)$ to solve Here, $a_{2}=3, a_{1}=6, a_{0}=5, b_{0}=6$
So $q(x)=3 x^{2}+6 x+5, e(x)=x+6$

## (Berlekamp-Welch: Example): Continued

Simplify equations mod 7 , move all variables to left: $a_{2}+a_{1}+a_{0}-3 b_{0}=3$
$4 a_{2}+2 a_{1}+a_{0}-b_{0}=2$
$2 a_{2}+3 a_{1}+a_{0}-4 b_{0}=5$
$2 a_{2}+4 a_{1}+a_{0}=0$
Can use Gaussian Elimination $(\bmod 7)$ to solve Here, $a_{2}=3, a_{1}=6, a_{0}=5, b_{0}=6$ So $q(x)=3 x^{2}+6 x+5, e(x)=x+6$
Do poly long division $\bmod 7$ to get $p(x)=3 x+2$ Original messages: $p(1)=5, p(2)=1$

## Fin

Next time: countability!

