Counting, Part I

CS 70, Summer 2019

Lecture 13, 7/16/19

Goals: Probability

- Lets you quantify uncertainty
- Concretely: has applications everywhere!
- Hopefully: learn techniques for reasoning about randomness and making better decisions logically
- Hopefully: provides a new perspective on the world

CS 70 Tips

The probability section in CS 70 usually means:

- One big topic, rather than many small topics
- Try your best to stay up to date; use OH!
- Important to be comfortable with the basics
- Fewer "proofs," more computations
- Emphasis on applying tools and problem solving
- Lectures will be example-driven
- Practice, practice, practice!

A Familiar Question
How many bit (0 or 1) strings are there of length 3 ? 3 choices

Choices, Choices, Choices...

A lunch special lets you choose one appetizer, one entreé, and one drink. There are 6 appetizers, 3 entreés, and 5 drinks. How many different meals could you possibly get?

The First Rule of Counting: Products

If the object you are counting:

- Comes from making k choices
- Has n_{1} options for the first choice
- Has n_{2} options for second, regardless of the first
- Has n_{3} options for the third, regardless of the first two
- ...and so on, until the k-th choice
\Longrightarrow Count the object using the product

Anagramming I
How many strings can we make by rearranging "CS70"?

$$
\text { character: } \frac{4}{\# 1} \times \frac{3}{\# 2} \times \frac{2}{\# 3} \times \frac{1}{\# 4}=24
$$

$$
n!=n(n-1)(n-2) \cdots 2 \cdot 1
$$

How many strings can we make by rearranging "ILOVECS70' if the numbers " 70 " must appear together in that order?
characters:

Counting Functions
How many functions are there from $\{1$, \qquad $n\}$ to $\{1$, $m\}$?

$$
\left(\begin{array}{l}
1 \\
2 \\
m
\end{array}\right.
$$

$$
\begin{aligned}
\frac{m}{f(1)} & \times \frac{m}{f(2)} \times \frac{m}{f(n)} \\
& =m^{n}
\end{aligned}
$$

Same setup, but $m \geq n$. How many infective functions are there?

$$
\begin{gathered}
\frac{m}{f(1)} \times \frac{(m-1) \times(m-2) \times(m-n+1)}{f(2)} \frac{\frac{(m)}{f(3)}-\frac{f(n)}{f}}{n=\frac{m!}{(m-n)!}} \\
\frac{n}{}
\end{gathered}
$$

Counting Polynomials
exactly
How many degree d polynomials are there modulo p ?

$$
\underbrace{\frac{p-1}{x^{d}} \times \frac{p}{x^{d-1}} \ldots \times \frac{p}{x^{0}}}_{d+1}=(p-1) p^{d}
$$

If $d \leq p$, how many have no repeating coefficients?
Exercise.

When Order Doesn't Matter: Space Team I
Among its 10 trainees, NASA wants to choose 3 to go to the moon. How many ways can they do this?
people $\frac{10 \times}{\# 1} \times \frac{9}{\# 2} \times 720$

When Order Doesn't Matter: Poker I
In poker, each player is dealt 5 cards. A standard deck (no jokers) has 52 cards. How many different hands could you get?

$$
\begin{gathered}
\left.\begin{array}{c}
\text { cards } \\
\begin{array}{c}
\text { ABCDE } \\
A B D E C \\
\vdots
\end{array} \\
\begin{array}{c}
\text { Repetitions }
\end{array} \\
\end{array}\right\} 5!\quad \frac{50}{47!5!}
\end{gathered}
$$

The Second Rule of Counting: Repetitions

Say we use the First Rule-we make k choices.

- Let A be the set of ordered objects.
- Let B be the set of unordered objects.

If there is an " m-to- 1 " function from A to B :
\Longrightarrow Count A and divide by m to get $|B|$.

Anagramming II
How many strings can we make by rearranging " $A P_{1} P_{2} L E$ "?

$$
\begin{aligned}
& A=\left\{\text { anagrams of } A P_{1} P_{2} L E\right\}=5! \\
& m: \quad A P_{1} P_{2} L E>A P L E=2 \\
& |B| \Rightarrow \frac{|A|}{m}=\frac{5!}{2}=60 .
\end{aligned}
$$

How many strings can we make by rearranging "BANANA"?

$$
|A|=6!
$$

$\mathrm{m}: ~ N ' s: 2!$ A's: 3!
Total: 2×3 !

$$
|B| \Rightarrow \frac{|A|}{m}=\frac{6!}{2!3!}
$$

Binomial Coefficients
How many ways can we...

- pick a set of 2 items out of n total?

$$
m: \frac{n \times(n-1)}{2} \text { reps. } \quad \int \frac{n!}{(n-2)!2!}
$$

pick a set of 3 items out of n total?

$$
\left.\frac{n \times(n-1) \times(n-2)}{3!\text { reps }}\right\} \frac{n!}{(n-3)!3!}
$$

pick a set of k items out of n total?

$$
\frac{n!}{(n-k)!k!}
$$

Binomial Coefficients

We often use

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

to represent the number of ways to choose k out of n items when order doesn't matter.

We call this quantity " n choose k ".
We also sometimes refer to these as "binomial coefficients."

Q: Using this definition, what does 0 ! equal?

Binomial Coefficients
Using this definition, what does 0 ! equal?

$$
\binom{n}{0}=1 \quad \frac{n!}{n!0!}=\frac{1}{0!}=1
$$

Should we be surprised that $\binom{n}{k}=\binom{n}{n-k}$?

$$
\begin{aligned}
& \frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!k!} \\
& \uparrow \text { R } \\
& \begin{array}{l}
\text { ways of choosing members } \\
k \text { members } \\
\text { FOR team } \\
\text { No ow } \\
\text { my team! }
\end{array}
\end{aligned}
$$

Anagramming III
How many bit strings can we make by k 1's and $(n-k) 0$'s?

\rightarrow with ordering: $n!$ Repetitions: 1's: k! $O^{\prime} s:(n-k)!>k!(n-k)!$

$$
\Rightarrow \frac{n!}{k!(n-k)!}=\binom{n}{k}
$$

Coincidence?
Is there a relationship between: $n-k$ o's

1. Length n bit strings with $k 1$'s, and
2. Ways of choosing k items from n when order doesn't matter?

NO!
Yes!

Putting It All Together: Space Team II
Among its 10 trainees, NASA wants to choose 3 to go to the moon, and 2 to go to Mars. They also don't want anyone to do both missions. How many ways can they choose teams?

$$
\left.\begin{array}{c|c}
\binom{10}{3} \times\binom{ 7}{2} \\
\text { moon mars } & \begin{array}{c}
3 \text { moon } \\
\hline
\end{array} \\
\hline
\end{array}\right)+\binom{10}{2} .
$$

If one member of the moon mission is designated as a captain, how many ways can they choose teams?

$$
\begin{aligned}
& \text { they choose teams? } \\
& \frac{\frac{10}{c} \frac{\binom{9}{2}}{\tau T}}{\text { moon }} \frac{\binom{7}{2}}{\text { Mars exercise: }} \frac{\binom{10}{2}}{\text { Mars }} \frac{\binom{8}{2}}{\frac{6}{T T}} \text { moon }
\end{aligned}
$$

Putting It All Together: Poker II ${ }^{*}$ Exercise

How many 5-card poker hands form a full house (triple + pair)?

How many 5-card poker hands form a straight (consecutive cards), including straight flushes (same suit)?

How many 5-card poker hands form two pairs?

Sampling Without Replacement
How many ways can we sample k items out of n items, without replacement, if:

- Order matters?
items

$$
\underbrace{\frac{n}{\text { atters? }} \times(n-1) \times(n-2) \times \ldots \times(n-k+1)}=\frac{n!}{(n-k)!}
$$

Order does not matter?
(second rule of canning)

$$
\binom{n}{k}
$$ k ! orderings per set.

We were able to use the First and Second rules of counting!

Sampling With Replacement
How many ways can we sample k items out of n total items, with replacement, if:

Order matters?
items $n \times n \times \ldots n=n^{k}$
Order does not matter? Label items $1, \ldots, n$.

$$
\begin{aligned}
111 \ldots 1 & \Rightarrow\{1,1, \ldots, 1\} \\
? & \Rightarrow\{1,1, \ldots, 2\} \text { \& } k \text { repetitions }
\end{aligned}
$$

What can we do when order does not matter?

When Repetitions Aren't Uniform: Splitting Money
Alice, Bob, and Charlie want to split \$6 amongst themselves.
First (naive and difficult) attempt: the "dollar's point of view"

$$
3 \times 3 \times 3 \times 3 \times 3 \times 3=3^{6}
$$

Dollar $*$ order doesít matter because dollars are indistinguisnable

When Repetitions Aren't Uniform: Splitting Money
Second attempt: the "divider" point of view

"Stars and Bars" Application: Sums to k
How many ways can we choose n (not necessarily distinct) non-negative numbers that sum to k ?

Summary

- k choices, always the same number of options at choice i regardless of previous outcome \Longrightarrow First Rule
- Order doesn't matter; same number of repetitions for each desired outcome \Longrightarrow Second Rule
- Indistinguishable items split among a fixed number of different buckets \Longrightarrow Stars and Bars

Pick Your Strategy I

You have 12 distinct cards and 3 people. How many ways to:

- Deal to the 3 people in sequence (4 cards each), and the order they received the cards matters?
- Deal to the 3 people in sequence (4 cards each), but order doesn't matter?

Pick Your Strategy II

You have 12 distinct cards and 3 people. How many ways to:

- Deal 3 piles in sequence (4 cards each), and don't distinguish the piles?
- The cards are now indistinguishable. How many ways to deal so that each person receives at least 2 cards?

Pick Your Strategy III

There are n citizens on 5 different committees.
Say $n>15$, and that each citizen is on at most 1 committee. How many ways to:

- Assign a leader to each committee, then distribute all $n-5$ remaining citizens in any way?
- Assign a captain and two members to each committee?

