Counting, Part I

CS 70, Summer 2019

Lecture 13, 7/16/19

<□▶ <∄▶ < ≧▶ < ≧▶ ≧ ♡ < ♡ 1/29

Goals: Probability

- Lets you quantify uncertainty
- Concretely: has **applications** everywhere!
- Hopefully: learn techniques for reasoning about randomness and making better decisions logically
- ► Hopefully: provides a **new perspective** on the world

CS 70 Tips

The probability section in CS 70 usually means:

- **One big topic**, rather than many small topics
 - Try your best to stay up to date; use OH!
 - Important to be comfortable with the basics
- Fewer "proofs," more **computations**
 - Emphasis on applying tools and problem solving
 - Lectures will be example-driven
- Practice, practice, practice!

A Familiar Question

How many bit (0 or 1) strings are there of length 3?

Choices, Choices, Choices...

A lunch special lets you choose one appetizer, one entreé, and one drink. There are 6 appetizers, 3 entreés, and 5 drinks. How many different meals could you possibly get?

The First Rule of Counting: Products

If the object you are counting:

- Comes from making k choices
- ► Has *n*¹ options for the first choice
- Has n₂ options for second, regardless of the first
- Has n₃ options for the third, regardless of the first two
- …and so on, until the k-th choice
- \implies Count the object using the **product**

 $n_1 \times n_2 \times n_3 \times \ldots \times n_k$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Anagramming I

How many strings can we make by rearranging "CS70"?

Counting Functions

2

η

Domain Range How many functions are there from $\{1, \ldots, n\}$ to $\{1, \ldots, m\}$?

 $\frac{1}{2} \qquad \frac{1}{f(1)} \qquad \frac{1}{f(2)} \qquad \frac{1}{f(n)} \qquad \frac{1}{f$ Same setup, but $m \ge n$. How many injective functions are there?

m

 $\frac{\mathcal{M}}{f(1)} \times \frac{(m-1) \times (m-2) \times (m-n+1)}{f(2)} + \frac{f(2)}{f(3)} + \frac{f(2)}{f(2)} + \frac{f(2)}{f$

codomain

Counting Polynomials

How many degree d polynomials are there modulo p?

 $\frac{1}{\sqrt{q}} \times \frac{p}{\chi d^{-1}} = (p-1) p^{d}$ d+1

If $d \leq p$, how many have no repeating coefficients?

Exercise.

When Order Doesn't Matter: Space Team I

When Order Doesn't Matter: Poker I

In poker, each player is dealt 5 cards. A standard deck (no jokers) has 52 cards. How many different hands could you get?

cords
$$52 51 50 49 48 = \frac{52!}{47!}$$

Repetitions ABCDE
 $\frac{52}{47!} 5! 52!$
 $\frac{52!}{47!5!}$

- 01

The Second Rule of Counting: Repetitions

Say we use the First Rule–we make k choices.

- Let *A* be the set of **ordered** objects.
- Let *B* be the set of **unordered** objects.

If there is an "*m*-to-1" function from A to B:

 \implies Count A and divide by m to get |B|.

Anagramming II

How many strings can we make by rearranging "APPLE"? A = { anagrams of AP, P2 LE} = 5! m: AP,P2LE > APPLE M=2 $|B| \Rightarrow \frac{|A|}{m} = \frac{5!}{2} = 60.$ How many strings can we make by rearranging "BANANA"? |A]= 6! m: N'S: 2! A'S: 3! TOFOL: 21×31 1B)=> <u>IAI</u> = <u>61</u> m= 2131

Binomial Coefficients

How many ways can we...

• pick a set of k items out of n total? $\underbrace{n!}_{(n-k)!\ k!}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

14/29

Binomial Coefficients

We often use

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

to represent the number of ways to choose k out of n items when order doesn't matter.

We call this quantity "*n* **choose** *k*". We also sometimes refer to these as "binomial coefficients."

Q: Using this definition, what does 0! equal?

Binomial Coefficients Using this definition, what does 0! equal? Should we be surprised that $\binom{n}{k} = \binom{n}{n-k}$? $\frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!}$ ways of choosing n-K member K members For team my team nbors my team

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Anagramming III

How many bit strings can we make by k 1's and (n - k) 0's?

$$\Rightarrow \frac{K_{i}(U-K)_{i}}{U_{i}} = \binom{K}{U}$$

Coincidence?

Is there a relationship between: n-k O'S

- **1.** Length n bit strings with k 1's, and
- 2. Ways of choosing k items from n when order doesn't matter?

Putting It All Together: Space Team II

Among its 10 trainees, NASA wants to choose 3 to go to the moon, and 2 to go to Mars. They also don't want anyone to do both missions. How many ways can they choose teams?

moor

Mag

MOG

moon

Mars

Mars.

Putting It All Together: Poker II SExercise

How many 5-card poker hands form a full house (triple + pair)?

How many 5-card poker hands form a straight (consecutive cards), including straight flushes (same suit)?

How many 5-card poker hands form two pairs?

Sampling Without Replacement

How many ways can we sample *k* items out of *n* items, **without replacement**, if:

Order does not matter?

(M) (second rule of canting) (K) k! orderings per set.

We were able to use the First and Second rules of counting!

Sampling With Replacement

How many ways can we sample *k* items out of *n* total items, **with replacement**, if:

items $\underline{\mathcal{M}} \times \underline{\mathcal{M}} \times \underline{\mathcal{M}} = \mathcal{M}^{\mathsf{K}}$

Order matters?

• Order does not matter? Label items 1, ..., n. $1 \pm 1 \dots \pm -> \{1, 1, \dots, 1\}$? $\Rightarrow \{1, 1, \dots, 2\}$ $x \neq repetitions$

What can we do when order does not matter?

When Repetitions Aren't Uniform: Splitting Money

Alice, Bob, and Charlie want to split \$6 amongst themselves.

First (naive and difficult) attempt: the "dollar's point of view"

\$3×3×3×3×3×3×3=36 A order doesn't matter Dollar because dollars are indústinguishable. Alice 6 AAAAAA 1 way BAAAAA ABAAAA 6 ways Africe 5 ABAAAA 6 to get Bob 1 NINOT USE 2nd rule!

When Repetitions Aren't Uniform: Splitting Money

"Stars and Bars" Application: Sums to k

Summary

- k choices, always the same number of options at choice i regardless of previous outcome => First Rule
- Order doesn't matter; same number of repetitions for each desired outcome => Second Rule
- Indistinguishable items split among a fixed number of different buckets ⇒ Stars and Bars

Pick Your Strategy I

You have 12 distinct cards and 3 people. How many ways to:

Deal to the 3 people in sequence (4 cards each), and the order they received the cards matters?

Deal to the 3 people in sequence (4 cards each), but order doesn't matter?

Pick Your Strategy II

You have 12 distinct cards and 3 people. How many ways to:

Deal 3 piles in sequence (4 cards each), and don't distinguish the piles?

The cards are now indistinguishable. How many ways to deal so that each person receives at least 2 cards?

Pick Your Strategy III

There are *n* citizens on 5 different committees. Say n > 15, and that each citizen is on at most 1 committee. How many ways to:

Assign a leader to each committee, then distribute all n - 5 remaining citizens in any way?

Assign a captain and two members to each committee?