RVs Continued: Joint Distribution and Intro to Expectation				
CS 70, Summer 2019				
Lecture 19, 7/25/19				

From Yesterday...

- RVs assign numbers to outcomes.
- Treat $X=i$ as any ordinary event.
- Bernoulli, Binomial, Geometric, Poisson RVs.

Today:

- Joint Distributions, Independent RVs, Conditional Probability
- Introduction to expectation and linearity of expectation

Joint Distribution: Example II

	$X=1$	$X=2$	$X=3$
$Y=2$	0.2	0.2	0.1
$Y=3$	0.1	0	0.3
$Y=4$	0	0.1	0

$$
\begin{aligned}
& \mathbb{P}[X=2]= \\
& \mathbb{P}[Y=2]= \\
& \mathbb{P}[(X=2) \cap(Y=2)]=
\end{aligned}
$$

Joint Distribution

Lets you work with multiple random variables. No different from intersections of events!

RV X : takes values a in set A
RV Y : takes values b in set B
Joint Distribution:
Values:
Specify the Probabilities:

Joint Distribution: Example III

	$X=1$	$X=2$	$X=3$
$Y=2$	0.2	0.2	0.1
$Y=3$	0.1	0	0.3
$Y=4$	0	0.1	0

Are the events $X=1$ and $Y=2$ independent?

Independent Random Variables

RVs X (values in A) and Y (values in B) are independent if:

$$
\begin{aligned}
& \text { for all } a \in A, b \in B: \\
& \mathbb{P}[X=a, Y=b]=
\end{aligned}
$$

Essentially the same story as ordinary events!!

Sum of Two Independent Poissons

Let $X \sim \operatorname{Poisson}\left(\lambda_{1}\right), Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$.
X and Y are independent.
$\mathbb{P}[X+Y=k]=$

Conditional Distributions

Also the same exact story:

	$X=1$	$X=2$	$X=3$
$Y=2$	0.2	0.2	0.1
$Y=3$	0.1	0	0.3
$Y=4$	0	0.1	0

$\mathbb{P}[(Y$ even $) \mid X \leq 2]=$

Break

Which building on or near campus is your "spirit building"?

Memorylessness of Geometrics

Memoryless: For all positive integers s, t :

$$
\mathbb{P}[X \geq s+t \mid X>t]=\mathbb{P}[X \geq s]
$$

Let $X \sim \operatorname{Geometric}(p) . X$ is memoryless:

Expectation of a RV

Also called the mean or average of a RV. Let X be a RV with values in A.

Its expectation is defined as:

Expectation of a RV: Example I

$$
X= \begin{cases}1 & \text { wp } 0.4 \\ \frac{1}{2} & \text { wp } 0.25 \\ -\frac{1}{2} & \text { wp } 0.35\end{cases}
$$

$\mathbb{E}[X]=$

Expectation of a RV: Example III

	$X=1$	$X=2$	$X=3$
$Y=2$	0.2	0.2	0.1
$Y=3$	0.1	0	0.3
$Y=4$	0	0.1	0

$\mathbb{E}[X]=$
$\mathbb{E}[Y]=$

Linearity of Expectation

The definition of expectation isn't always easy to use. Linearity remedies this.

Theorem: Let $X_{1}, X_{2}, \ldots, X_{n}$ be RVs over the same probability space.
They are not necessarily independent. Then:
$\mathbb{E}\left[X_{1}+\ldots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\ldots+\mathbb{E}\left[X_{n}\right]$
For constant $c, \quad \mathbb{E}\left[c X_{i}\right]=c \cdot \mathbb{E}\left[X_{i}\right]$
Proof: Notes. Out of scope, but not a hard proof.
Maybe formally go through it next lecture.

Expectation of a Bernoulli

Recall that if $X \sim \operatorname{Bernoulli}(p)$

$$
\begin{gathered}
\mathbb{P}[X=1]=p \\
\mathbb{P}[X=0]=1-p
\end{gathered}
$$

Then: $\mathbb{E}[X]=$

Linearity: Example I

	$X=1$	$X=2$	$X=3$
$Y=2$	0.2	0.2	0.1
$Y=3$	0.1	0	0.3
$Y=4$	0	0.1	0

From previous: $\mathbb{E}[X]=2.1, \mathbb{E}[Y]=2.6$.
$\mathbb{E}[3 X+7 Y]=$

Expectation of a Binomial

Let X_{1}, \ldots, X_{n} be i.i.d. Bernoulli(p) RVs.
Let $X=X_{1}+\ldots+X_{n}$.

$$
x \sim
$$

What is $\mathbb{E}[X]$?

A Note on Symmetry

$C_{i}=$ indicator for the i-th card being an ace.

$$
\mathbb{P}\left[C_{i}=1\right]=
$$

Now, imagine I draw the entire deck.

$$
\mathbb{E}\left[C_{1}+C_{2}+\ldots+C_{52}\right]=
$$

Using this, for any i, what is $\mathbb{E}\left[C_{i}\right]$?

Linearity: Example II

I draw two cards from a standard deck.
What is the expected number of aces I get?
Attempt \#1: Use the definition.

Linearity: Mixing Up HW

(From notes.)
Same HW setup as before with n students.
$S_{i}=$ indicator variable for

Linearity: Example II

Attempt \#2: Use linearity of expectation.
$C_{1}=$
$C_{2}=$

Summary

- Joint distribution: multiple RVs. Can still be defined for non-independent RVs.
- Ideas of independence, conditional probability same as before.
- Expectation describes the weighted average of a RV.
- For more complicated RVs, break down into smaller parts (e.g. indicator variables) and use linearity

