

Mixing Up HW

n students turn in their HW, but I accidently mix them up. I return HW to the students, so that each mixup (permutation) is equally likely.

What is the expected number of students who get their own HW back?

Expectation of a RV: Example III

	X = 1	<i>X</i> = 2	<i>X</i> = 3
Y = 2	0.2	0.2	0.1
Y = 3	0.1	0	0.3
Y = 4	0	0.1	0

 $\mathbb{E}[X] =$

 $\mathbb{E}[Y] =$

Expectation of a Bernoulli Recall that if $X \sim \text{Bernoulli}(p)$

$$\mathbb{P}[X=1]=p$$

$$\mathbb{P}[X=0] = 1 - p$$

Then: $\mathbb{E}[X] =$

15/24

Linearity of Expectation

The definition of expectation isn't always easy to use. **Linearity** remedies this.

◆□ ▶ < ⑦ ▶ < ≥ ▶ < ≥ ▶ ≥ • 9 Q C 14/24

Theorem: Let X_1, X_2, \ldots, X_n be RVs over the same probability space. They are **not necessarily independent.** Then:

$$\mathbb{E}[X_1 + \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$$

For **constant**
$$c$$
, $\mathbb{E}[cX_i] = c \cdot \mathbb{E}[X_i]$

Proof: Notes. Out of scope, but not a hard proof. Maybe formally go through it next lecture. <□ ▶ < ⑦ ▶ < 言 ▶ < 言 ▶ 言 ● のへの 17/24 Y = 1 Y = 2 Y = 3

Linearity: Example I

	$ \wedge = 1$		$\lambda = 2$	
Y = 2	0.2	0.2	0.1	
Y = 3	0.1	0	0.3	
<i>Y</i> = 4	0	0.1	0	

From previous: $\mathbb{E}[X] = 2.1$, $\mathbb{E}[Y] = 2.6$.

 $\mathbb{E}[3X+7Y] =$

