
Lecture 5: Graph Theory 2
Snakes On a Planar Graph
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Coloring a Map
How many colors required for this map?
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Planar Graphs
Graph is planar if can be drawn w/o edge crossings

Examples:

Not Examples:
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But Whhhhyyyyyy???
Why do we care about planar graphs?

≡
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Face(book)
A face is connected region of plane

Claim: Conn. graph has one face ⇐⇒ is a tree
Intuition: have interior face ⇐⇒ have cycle
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The Return Of the Euler
Theorem: For a conn. planar graph, v+ f = e+ 2.1

Let’s verify this on example graphs

1st one: v = 4, e = 3, f = 1 ✓
2nd one, first half: v = 3, e = 2, f = 1 ✓
2nd one, second half: v = 4, e = 4, f = 2 ✓
3rd one: v = 4, e = 6, f = 4 ✓

1This is known as Euler’s formula
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Proof Of Euler
Theorem: For a conn. planar graph, v + f = e + 2.

Proof:
▶ By induction on f
▶ Base Case (f = 1): tree, so e = v − 1

Thus e + 2 = v + 1 = v + f
▶ Suppose true for k faces
▶ For k + 1, remove edge between two faces
▶ k faces, so v + k = (e − 1) + 2
▶ Add 1 to both sides: v + f = e + 2
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Sparsity
Euler: planar graphs have few edges.

Theorem: For conn. planar graph, e ≤ 3v − 6.
Proof:

▶ Each edge has 2 “sides” (s = 2e)
▶ Each face has ≥ 3 “sides” (s ≥ 3f)
▶ Thus, 2e ≥ 3f, so f ≤ 2

3e
▶ Euler: v + f = e + 2
▶ Plug in for f: v + 2

3e ≥ e + 2
▶ Thus 1

3e + 2 ≤ v, so e ≤ 3v − 6
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Non-Planarity
Claim: K5 and K3,3 are non-planar.

For K5, e = 10, but 3v − 6 = 3(5)− 6 = 9!
K3,3 has e = 9 and 3v − 6 = 3(6)− 6 = 12
Not enough information to prove for K3,3 yet!
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Bipartite Planarity
Theorem: Bipartite planar graph has e ≤ 2v − 4.

Proof:
▶ As before, edges have two sides (s = 2e)
▶ Bipartite means no triangles! So s ≥ 4f
▶ Hence 2e ≥ 4f, so f ≤ 1

2e
▶ Plug into Euler’s: v + 1

2e ≥ e + 2
▶ Thus 1

2e + 2 ≤ v, so e ≤ 2v − 4

For K3,3, 2v − 4 = 2(6)− 4 = 8
9 edges means non-planar!
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Why K5 and K3,3?
Kuratowski’s Theorem: A graph is non-planar iff
it “contains” K5 or K3,3.

Full meaning of “contains” beyond our scope
Less general: non-planar if has exact copy
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What Were We Talking About Again?
Back to coloring!
Theorem: Any planar graph can be 6-colored.

To prove, need following lemma:
Every planar graph has a degree ≤ 5 vertex.
Proof:

▶ Previously: e ≤ 3v − 6
▶ Total degree is 2e ≤ 6v − 12
▶ Thus average degree is ≤ 6v−12

v < 6
▶ Not every vertex above average!
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6-Color Theorem
Theorem: Any planar graph can be 6-colored.
Proof:

▶ By induction on |V|

▶ Base Case (|V| = 1): only need 1 color...
▶ Suppose true for graphs on k vertices
▶ Take G on k + 1 vertices
▶ Remove v st deg(v) ≤ 5, 6-color result
▶ v has ≤ 5 neighbors, so color available!

v
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Zzzzzzzz...
Break time–be social!

Today’s Discussion Question:
What vegetable or fruit would you be and why?
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5-Color Theorem
Theorem: Any planar graph can be 5-colored.

Proof:
▶ Same idea as 6-color theorem
▶ Remove deg ≤ 5 vertex, color, add back
▶ If deg ≤ 4, color remaining, so fine
▶ If two neighbors same color, again fine
▶ Problem if all 5 neighbors have different color
▶ Need to modify original coloring to fix!

15 / 22



5-Color Theorem
Theorem: Any planar graph can be 5-colored.
Proof:

▶ Same idea as 6-color theorem
▶ Remove deg ≤ 5 vertex, color, add back

▶ If deg ≤ 4, color remaining, so fine
▶ If two neighbors same color, again fine
▶ Problem if all 5 neighbors have different color
▶ Need to modify original coloring to fix!

15 / 22



5-Color Theorem
Theorem: Any planar graph can be 5-colored.
Proof:

▶ Same idea as 6-color theorem
▶ Remove deg ≤ 5 vertex, color, add back
▶ If deg ≤ 4, color remaining, so fine
▶ If two neighbors same color, again fine

▶ Problem if all 5 neighbors have different color
▶ Need to modify original coloring to fix!

15 / 22



5-Color Theorem
Theorem: Any planar graph can be 5-colored.
Proof:

▶ Same idea as 6-color theorem
▶ Remove deg ≤ 5 vertex, color, add back
▶ If deg ≤ 4, color remaining, so fine
▶ If two neighbors same color, again fine
▶ Problem if all 5 neighbors have different color
▶ Need to modify original coloring to fix!

15 / 22



Missed Connections
Will consider color connected components2

Idea: remove all verts not colored c1 or c2 from G
For vertex v colored c1 or c2, CCC(G, v, c1, c2) is
connected component in result that contains v

Claim: can reverse colors in any CCC and be fine

2This is totally not a term I just made up *looks around shiftily*
16 / 22



Missed Connections
Will consider color connected components2

Idea: remove all verts not colored c1 or c2 from G
For vertex v colored c1 or c2, CCC(G, v, c1, c2) is
connected component in result that contains v

Claim: can reverse colors in any CCC and be fine

2This is totally not a term I just made up *looks around shiftily*
16 / 22



Missed Connections
Will consider color connected components2

Idea: remove all verts not colored c1 or c2 from G
For vertex v colored c1 or c2, CCC(G, v, c1, c2) is
connected component in result that contains v

Claim: can reverse colors in any CCC and be fine

2This is totally not a term I just made up *looks around shiftily*
16 / 22



Missed Connections
Will consider color connected components2

Idea: remove all verts not colored c1 or c2 from G
For vertex v colored c1 or c2, CCC(G, v, c1, c2) is
connected component in result that contains v

Claim: can reverse colors in any CCC and be fine
2This is totally not a term I just made up *looks around shiftily*

16 / 22



Back To 5-Coloring
Fix a planar drawing and recursive coloring:

v

c1

c2

c3c4

c5

owo, what dis?
Try to change c5 to c3
Try to change c4 to c2
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Bringing It Back

This map can be colored with 5 colors!

In fact, is a 4-color theorem as well.
Computer aided proof, not yet human readable.
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Hypercubes
One more special type of graph: hypercubes!

Intuition: few edges, but “hard” to cut in half
Good design for communication network!
Formal definition: n-dimensional hypercube has
vertex for each length-n bitstring
Edge between vertices iff they differ in one bit

19 / 22
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A Recursive Definition
Alernately define hypercubes by recursion:

0-dimensional hypercube is single vertex
(n + 1)-dim hypercube is two copies of n-dim
Corresponding vertices connected by edges
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What Does That Even Mean?
Claim: hypercube is “hard” to cut in half.
What does this mean, formally?

Theorem: To separate hypercube into sets S1 and
S2, need to cut ≥ min(|S1|, |S2|) edges.
Intuition: maybe easy to cut off a few vertices, hard
to cut off a lot.
Proof in notes if you’re interested ;)
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Fin
Next time: modular arithmetic!
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