Lecture 5: Graph Theory 2
 Snakes On a Planar Graph

Coloring a Map

How many colors required for this map?

Coloring a Map

How many colors required for this map?

Planar Graphs

Graph is planar if can be drawn w/o edge crossings

Planar Graphs

Graph is planar if can be drawn w/o edge crossings
Examples:

Planar Graphs

Graph is planar if can be drawn w/o edge crossings
Examples:

Not Examples:

But Whhhhyyyyyy???

Why do we care about planar graphs?

But Whhhhyyyyyy???

Why do we care about planar graphs?

Face(book)

A face is connected region of plane

Face(book)

A face is connected region of plane

Face(book)

A face is connected region of plane

Claim: Conn. graph has one face \Longleftrightarrow is a tree

Face(book)

A face is connected region of plane

Claim: Conn. graph has one face \Longleftrightarrow is a tree Intuition: have interior face \Longleftrightarrow have cycle

The Return Of the Euler

Theorem: For a conn. planar graph, $v+f=e+2 .{ }^{1}$
${ }^{1}$ This is known as Euler's formula

The Return Of the Euler

Theorem: For a conn. planar graph, $v+f=e+2 .{ }^{1}$ Let's verify this on example graphs

${ }^{1}$ This is known as Euler's formula

The Return Of the Euler

Theorem: For a conn. planar graph, $v+f=e+2 .{ }^{1}$ Let's verify this on example graphs

1st one: $v=4, e=3, f=1$

The Return Of the Euler

Theorem: For a conn. planar graph, $v+f=e+2 .{ }^{1}$ Let's verify this on example graphs

1st one: $v=4, e=3, f=1$
2nd one, first half: $v=3, e=2, f=1$
2nd one, second half: $v=4, e=4, f=2$

The Return Of the Euler

Theorem: For a conn. planar graph, $v+f=e+2 .{ }^{1}$ Let's verify this on example graphs

1st one: $v=4, e=3, f=1$
2nd one, first half: $v=3, e=2, f=1$
2nd one, second half: $v=4, e=4, f=2$
3rd one: $v=4, e=6, f=4$
${ }^{1}$ This is known as Euler's formula

Proof Of Euler

Theorem: For a conn. planar graph, $v+f=e+2$.

Proof Of Euler

Theorem: For a conn. planar graph, $v+f=e+2$.
Proof:

- By induction on f

Proof Of Euler

Theorem: For a conn. planar graph, $v+f=e+2$.
Proof:

- By induction on f
- Base Case $(f=1)$: tree, so $e=v-1$ Thus $e+2=v+1=v+f$

Proof Of Euler

Theorem: For a conn. planar graph, $v+f=e+2$.

Proof:

- By induction on f
- Base Case $(f=1)$: tree, so $e=v-1$ Thus $e+2=v+1=v+f$
- Suppose true for k faces

Proof Of Euler

Theorem: For a conn. planar graph, $v+f=e+2$.

Proof:

- By induction on f
- Base Case $(f=1)$: tree, so $e=v-1$

Thus $e+2=v+1=v+f$

- Suppose true for k faces
- For $k+1$, remove edge between two faces
- k faces, so $v+k=(e-1)+2$

Proof Of Euler

Theorem: For a conn. planar graph, $v+f=e+2$.

Proof:

- By induction on f
- Base Case $(f=1)$: tree, so $e=v-1$

Thus $e+2=v+1=v+f$

- Suppose true for k faces
- For $k+1$, remove edge between two faces
- k faces, so $v+k=(e-1)+2$
- Add 1 to both sides: $v+f=e+2$

Sparsity

Euler: planar graphs have few edges.

Sparsity

Euler: planar graphs have few edges.
Theorem: For conn. planar graph, $e \leq 3 v-6$.

Sparsity

Euler: planar graphs have few edges.
Theorem: For conn. planar graph, $e \leq 3 v-6$.
Proof:

- Each edge has 2 "sides" $(s=2 e)$
- Each face has ≥ 3 "sides" $(s \geq 3 f)$

Sparsity

Euler: planar graphs have few edges.
Theorem: For conn. planar graph, $e \leq 3 v-6$.
Proof:

- Each edge has 2 "sides" $(s=2 e)$
- Each face has ≥ 3 "sides" $(s \geq 3 f)$
- Thus, $2 e \geq 3 f$, so $f \leq \frac{2}{3} e$

Sparsity

Euler: planar graphs have few edges.
Theorem: For conn. planar graph, $e \leq 3 v-6$.

Proof:

- Each edge has 2 "sides" $(s=2 e)$
- Each face has ≥ 3 "sides" $(s \geq 3 f)$
- Thus, $2 e \geq 3 f$, so $f \leq \frac{2}{3} e$
- Euler: $v+f=e+2$

Sparsity

Euler: planar graphs have few edges.
Theorem: For conn. planar graph, $e \leq 3 v-6$.

Proof:

- Each edge has 2 "sides" $(s=2 e)$
- Each face has ≥ 3 "sides" $(s \geq 3 f)$
- Thus, $2 e \geq 3 f$, so $f \leq \frac{2}{3} e$
- Euler: $v+f=e+2$
- Plug in for $f: v+\frac{2}{3} e \geq e+2$

Sparsity

Euler: planar graphs have few edges.
Theorem: For conn. planar graph, $e \leq 3 v-6$.

Proof:

- Each edge has 2 "sides" $(s=2 e)$
- Each face has ≥ 3 "sides" $(s \geq 3 f)$
- Thus, $2 e \geq 3 f$, so $f \leq \frac{2}{3} e$
- Euler: $v+f=e+2$
- Plug in for $f: v+\frac{2}{3} e \geq e+2$
- Thus $\frac{1}{3} e+2 \leq v$, so $e \leq 3 v-6$

Non-Planarity

Claim: K_{5} and $K_{3,3}$ are non-planar.

Non-Planarity

Claim: K_{5} and $K_{3,3}$ are non-planar.

For $K_{5}, e=10$, but $3 v-6=3(5)-6=9$!

Non-Planarity

Claim: K_{5} and $K_{3,3}$ are non-planar.

For $K_{5}, e=10$, but $3 v-6=3(5)-6=9$!
$K_{3,3}$ has $e=9$ and $3 v-6=3(6)-6=12$ Not enough information to prove for $K_{3,3}$ yet!

Bipartite Planarity

Theorem: Bipartite planar graph has $e \leq 2 v-4$.

Bipartite Planarity

Theorem: Bipartite planar graph has $e \leq 2 v-4$.
Proof:

- As before, edges have two sides $(s=2 e)$

Bipartite Planarity

Theorem: Bipartite planar graph has $e \leq 2 v-4$.

Proof:

- As before, edges have two sides $(s=2 e)$
- Bipartite means no triangles! So $s \geq 4 f$

Bipartite Planarity

Theorem: Bipartite planar graph has $e \leq 2 v-4$.

Proof:

- As before, edges have two sides $(s=2 e)$
- Bipartite means no triangles! So $s \geq 4 f$
- Hence $2 e \geq 4 f$, so $f \leq \frac{1}{2} e$

Bipartite Planarity

Theorem: Bipartite planar graph has $e \leq 2 v-4$.

Proof:

- As before, edges have two sides $(s=2 e)$
- Bipartite means no triangles! So $s \geq 4 f$
- Hence $2 e \geq 4 f$, so $f \leq \frac{1}{2} e$
- Plug into Euler's: $v+\frac{1}{2} e \geq e+2$
- Thus $\frac{1}{2} e+2 \leq v$, so $e \leq 2 v-4$

Bipartite Planarity

Theorem: Bipartite planar graph has $e \leq 2 v-4$.

Proof:

- As before, edges have two sides $(s=2 e)$
- Bipartite means no triangles! So $s \geq 4 f$
- Hence $2 e \geq 4 f$, so $f \leq \frac{1}{2} e$
- Plug into Euler's: $v+\frac{1}{2} e \geq e+2$
- Thus $\frac{1}{2} e+2 \leq v$, so $e \leq 2 v-4$

For $K_{3,3}, 2 v-4=2(6)-4=8$
9 edges means non-planar!

Why K_{5} and $K_{3,3}$?

Kuratowski's Theorem: A graph is non-planar iff it "contains" K_{5} or $K_{3,3}$.

Why K_{5} and $K_{3,3}$?

Kuratowski’s Theorem: A graph is non-planar iff it "contains" K_{5} or $K_{3,3}$.

Full meaning of "contains" beyond our scope Less general: non-planar if has exact copy

What Were We Talking About Again?

Back to coloring!
Theorem: Any planar graph can be 6-colored.

What Were We Talking About Again?

Back to coloring!
Theorem: Any planar graph can be 6-colored.
To prove, need following lemma:
Every planar graph has a degree ≤ 5 vertex.

What Were We Talking About Again?

Back to coloring!
Theorem: Any planar graph can be 6-colored.
To prove, need following lemma:
Every planar graph has a degree ≤ 5 vertex.
Proof:

- Previously: $e \leq 3 v-6$

What Were We Talking About Again?

Back to coloring!
Theorem: Any planar graph can be 6-colored.
To prove, need following lemma:
Every planar graph has a degree ≤ 5 vertex.

Proof:

- Previously: $e \leq 3 v-6$
- Total degree is $2 e \leq 6 v-12$
- Thus average degree is $\leq \frac{6 v-12}{v}<6$

What Were We Talking About Again?

Back to coloring!
Theorem: Any planar graph can be 6-colored.
To prove, need following lemma:
Every planar graph has a degree ≤ 5 vertex.

Proof:

- Previously: $e \leq 3 v-6$
- Total degree is $2 e \leq 6 v-12$
- Thus average degree is $\leq \frac{6 v-12}{v}<6$
- Not every vertex above average!

6-Color Theorem

Theorem: Any planar graph can be 6-colored.
Proof:

- By induction on $|V|$

6-Color Theorem

Theorem: Any planar graph can be 6-colored.
Proof:

- By induction on $|V|$
- Base Case $(\mid V=1)$: only need 1 color...

6-Color Theorem

Theorem: Any planar graph can be 6-colored.

Proof:

- By induction on $|V|$
- Base Case $(\mid V=1)$: only need 1 color...
- Suppose true for graphs on k vertices
- Take G on $k+1$ vertices

6-Color Theorem

Theorem: Any planar graph can be 6 -colored.

Proof:

- By induction on $|V|$
- Base Case $(\mid V=1)$: only need 1 color...
- Suppose true for graphs on k vertices
- Take G on $k+1$ vertices
- Remove v st $\operatorname{deg}(v) \leq 5$, 6-color result

6-Color Theorem

Theorem: Any planar graph can be 6-colored.

Proof:

- By induction on $|V|$
- Base Case $(\mid V=1)$: only need 1 color...
- Suppose true for graphs on k vertices
- Take G on $k+1$ vertices
- Remove v st $\operatorname{deg}(v) \leq 5$, 6-color result
- v has ≤ 5 neighbors, so color available!

Zzzzzzzz...
Break time-be socia!!

ZZZZZZZZ...
Break time-be social!
Today's Discussion Question:
What vegetable or fruit would you be and why?

5-Color Theorem

Theorem: Any planar graph can be 5-colored.

5-Color Theorem

Theorem: Any planar graph can be 5 -colored.

Proof:

- Same idea as 6-color theorem
- Remove deg ≤ 5 vertex, color, add back

5-Color Theorem

Theorem: Any planar graph can be 5-colored.

Proof:

- Same idea as 6-color theorem
- Remove deg ≤ 5 vertex, color, add back
- If deg ≤ 4, color remaining, so fine
- If two neighbors same color, again fine

5-Color Theorem

Theorem: Any planar graph can be 5-colored.

Proof:

- Same idea as 6-color theorem
- Remove deg ≤ 5 vertex, color, add back
- If deg ≤ 4, color remaining, so fine
- If two neighbors same color, again fine
- Problem if all 5 neighbors have different color
- Need to modify original coloring to fix!

Missed Connections

Will consider color connected components ${ }^{2}$

${ }^{2}$ This is totally not a term I just made up *looks around shiftily*

Missed Connections

Will consider color connected components ${ }^{2}$
Idea: remove all verts not colored c_{1} or c_{2} from G For vertex v colored c_{1} or $c_{2}, \operatorname{CCC}\left(G, v, c_{1}, c_{2}\right)$ is connected component in result that contains v

Missed Connections

Will consider color connected components ${ }^{2}$
Idea: remove all verts not colored c_{1} or c_{2} from G For vertex v colored c_{1} or $c_{2}, \operatorname{CCC}\left(G, v, c_{1}, c_{2}\right)$ is connected component in result that contains v

Missed Connections

Will consider color connected components ${ }^{2}$
Idea: remove all verts not colored c_{1} or c_{2} from G For vertex v colored c_{1} or $c_{2}, \operatorname{CCC}\left(G, v, c_{1}, c_{2}\right)$ is connected component in result that contains v

Claim: can reverse colors in any CCC and be fine ${ }^{2}$ This is totally not a term I just made up *looks around shiftily*

Back To 5-Coloring

Fix a planar drawing and recursive coloring:

Back To 5-Coloring

Fix a planar drawing and recursive coloring:

Try to change c_{5} to c_{3}

Back To 5-Coloring

Fix a planar drawing and recursive coloring:

Try to change c_{5} to c_{3}

Back To 5-Coloring

Fix a planar drawing and recursive coloring:

Try to change c_{5} to c_{3}
Try to change c_{4} to c_{2}

Back To 5-Coloring

Fix a planar drawing and recursive coloring:

Try to change c_{5} to c_{3}
Try to change c_{4} to c_{2}

Back To 5-Coloring

Fix a planar drawing and recursive coloring:

Try to change c_{5} to c_{3}
Try to change c_{4} to c_{2}

Bringing It Back

This map can be colored with 5 colors!

Bringing lt Back

This map can be colored with 5 colors!
In fact, is a 4-color theorem as well.
Computer aided proof, not yet human readable.

Hypercubes

One more special type of graph: hypercubes!

Hypercubes

One more special type of graph: hypercubes!
Intuition: few edges, but "hard" to cut in half
Good design for communication network!

Hypercubes

One more special type of graph: hypercubes!
Intuition: few edges, but "hard" to cut in half
Good design for communication network!
Formal definition: n-dimensional hypercube has vertex for each length- n bitstring
Edge between vertices iff they differ in one bit

Hypercubes

One more special type of graph: hypercubes!
Intuition: few edges, but "hard" to cut in half
Good design for communication network!
Formal definition: n-dimensional hypercube has vertex for each length- n bitstring
Edge between vertices iff they differ in one bit

A Recursive Definition

Alernately define hypercubes by recursion:

A Recursive Definition

Alernately define hypercubes by recursion:
0 -dimensional hypercube is single vertex

A Recursive Definition

Alernately define hypercubes by recursion:
0 -dimensional hypercube is single vertex
($n+1$)-dim hypercube is two copies of n-dim
Corresponding vertices connected by edges

A Recursive Definition

Alernately define hypercubes by recursion:
0 -dimensional hypercube is single vertex
($n+1$)-dim hypercube is two copies of n-dim
Corresponding vertices connected by edges

What Does That Even Mean?

Claim: hypercube is "hard" to cut in half. What does this mean, formally?

What Does That Even Mean?

Claim: hypercube is "hard" to cut in half. What does this mean, formally?

Theorem: To separate hypercube into sets S_{1} and S_{2}, need to cut $\geq \min \left(\left|S_{1}\right|,\left|S_{2}\right|\right)$ edges.

What Does That Even Mean?

Claim: hypercube is "hard" to cut in half. What does this mean, formally?

Theorem: To separate hypercube into sets S_{1} and S_{2}, need to cut $\geq \min \left(\left|S_{1}\right|,\left|S_{2}\right|\right)$ edges.
Intuition: maybe easy to cut off a few vertices, hard to cut off a lot.

What Does That Even Mean?

Claim: hypercube is "hard" to cut in half. What does this mean, formally?

Theorem: To separate hypercube into sets S_{1} and S_{2}, need to cut $\geq \min \left(\left|S_{1}\right|,\left|S_{2}\right|\right)$ edges.
Intuition: maybe easy to cut off a few vertices, hard to cut off a lot.

Proof in notes if you're interested ;)

Fin

Next time: modular arithmetic!

