Lecture 5: Graph Theory 2 Snakes On a Planar Graph

Coloring a Map

How many colors required for this map?

Coloring a Map

How many colors required for this map?

Planar Graphs

Graph is *planar* if can be drawn w/o edge crossings

Planar Graphs

Graph is *planar* if can be drawn w/o edge crossings Examples:

Planar Graphs

Graph is *planar* if can be drawn w/o edge crossings Examples:

Not Examples:

But Whhhhyyyyy???

Why do we care about planar graphs?

But Whhhhyyyyy???

Why do we care about planar graphs?

 \equiv

A *face* is connected region of plane

A face is connected region of plane

A face is connected region of plane

Claim: Conn. graph has one face \iff is a tree

A face is connected region of plane

Claim: Conn. graph has one face \iff is a tree Intuition: have interior face \iff have cycle

Theorem: For a conn. planar graph, v + f = e + 2.¹

Theorem: For a conn. planar graph, v + f = e + 2.¹ Let's verify this on example graphs

Theorem: For a conn. planar graph, v + f = e + 2.¹ Let's verify this on example graphs

1st one: v = 4, e = 3, f = 1 \checkmark

Theorem: For a conn. planar graph, v + f = e + 2.¹ Let's verify this on example graphs

1st one: v = 4, e = 3, f = 1 2nd one, first half: v = 3, e = 2, f = 1 2nd one, second half: v = 4, e = 4, f = 2

¹This is known as Euler's formula

Theorem: For a conn. planar graph, v + f = e + 2.¹ Let's verify this on example graphs

1st one: v = 4, e = 3, f = 1 2nd one, first half: v = 3, e = 2, f = 1 2nd one, second half: v = 4, e = 4, f = 2 3rd one: v = 4, e = 6, f = 4 \checkmark

Theorem: For a conn. planar graph, v + f = e + 2.

Theorem: For a conn. planar graph, v + f = e + 2.

- Proof:
 - By induction on f

Theorem: For a conn. planar graph, v + f = e + 2.

- By induction on f
- Base Case (f = 1): tree, so e = v − 1 Thus e + 2 = v + 1 = v + f

Theorem: For a conn. planar graph, v + f = e + 2.

- By induction on f
- Base Case (f = 1): tree, so e = v − 1 Thus e + 2 = v + 1 = v + f
- Suppose true for k faces

Theorem: For a conn. planar graph, v + f = e + 2.

- By induction on f
- ▶ Base Case (f = 1): tree, so e = v 1 Thus e + 2 = v + 1 = v + f
- Suppose true for k faces
- For k + 1, remove edge between two faces

• *k* faces, so
$$v + k = (e - 1) + 2$$

Theorem: For a conn. planar graph, v + f = e + 2.

- By induction on f
- ▶ Base Case (f = 1): tree, so e = v 1 Thus e + 2 = v + 1 = v + f
- Suppose true for k faces
- For k + 1, remove edge between two faces
- *k* faces, so v + k = (e 1) + 2
- Add 1 to both sides: v + f = e + 2

Euler: planar graphs have few edges.

Euler: planar graphs have few edges.

Theorem: For conn. planar graph, $e \leq 3v - 6$.

Euler: planar graphs have few edges.

Theorem: For conn. planar graph, $e \leq 3v - 6$.

- Each edge has 2 "sides" (s = 2e)
- Each face has \geq 3 "sides" ($s \geq 3f$)

Euler: planar graphs have few edges.

Theorem: For conn. planar graph, $e \leq 3v - 6$.

- Each edge has 2 "sides" (s = 2e)
- Each face has \geq 3 "sides" ($s \geq$ 3f)
- Thus, $2e \ge 3f$, so $f \le \frac{2}{3}e$

Euler: planar graphs have few edges.

Theorem: For conn. planar graph, $e \leq 3v - 6$.

- Each edge has 2 "sides" (s = 2e)
- Each face has \geq 3 "sides" ($s \geq$ 3f)
- Thus, $2e \ge 3f$, so $f \le \frac{2}{3}e$
- Euler: v + f = e + 2

Euler: planar graphs have few edges.

Theorem: For conn. planar graph, $e \leq 3v - 6$.

- Each edge has 2 "sides" (s = 2e)
- Each face has \geq 3 "sides" ($s \geq$ 3f)
- Thus, $2e \ge 3f$, so $f \le \frac{2}{3}e$
- Euler: v + f = e + 2
- Plug in for f. $v + \frac{2}{3}e \ge e + 2$

Euler: planar graphs have few edges.

Theorem: For conn. planar graph, $e \leq 3v - 6$.

- Each edge has 2 "sides" (s = 2e)
- Each face has \geq 3 "sides" ($s \geq$ 3f)
- Thus, $2e \ge 3f$, so $f \le \frac{2}{3}e$
- Euler: v + f = e + 2
- Plug in for f. $v + \frac{2}{3}e \ge e + 2$
- Thus $\frac{1}{3}e + 2 \le v$, so $e \le 3v 6$

Non-Planarity

Claim: K_5 and $K_{3,3}$ are non-planar.

Non-Planarity

Claim: K_5 and $K_{3,3}$ are non-planar.

For K_5 , e = 10, but 3v - 6 = 3(5) - 6 = 9!

Non-Planarity

Claim: K_5 and $K_{3,3}$ are non-planar.

For K_5 , e = 10, but 3v - 6 = 3(5) - 6 = 9! $K_{3,3}$ has e = 9 and 3v - 6 = 3(6) - 6 = 12Not enough information to prove for $K_{3,3}$ yet!

Bipartite Planarity

Theorem: Bipartite planar graph has $e \le 2v - 4$.

Bipartite Planarity

Theorem: Bipartite planar graph has $e \le 2v - 4$. **Proof**:

• As before, edges have two sides (s = 2e)

Bipartite Planarity

Theorem: Bipartite planar graph has $e \le 2v - 4$. **Proof**:

- As before, edges have two sides (s = 2e)
- Bipartite means no triangles! So $s \ge 4f$

Bipartite Planarity

Theorem: Bipartite planar graph has $e \le 2v - 4$. **Proof**:

- As before, edges have two sides (s = 2e)
- Bipartite means no triangles! So $s \ge 4f$
- Hence $2e \ge 4f$, so $f \le \frac{1}{2}e$

Bipartite Planarity

Theorem: Bipartite planar graph has $e \le 2v - 4$. **Proof**:

- As before, edges have two sides (s = 2e)
- Bipartite means no triangles! So $s \ge 4f$
- Hence $2e \ge 4f$, so $f \le \frac{1}{2}e$
- Plug into Euler's: $v + \frac{1}{2}e \ge e + 2$
- Thus $\frac{1}{2}e + 2 \le v$, so $e \le 2v 4$

Bipartite Planarity

Theorem: Bipartite planar graph has $e \le 2v - 4$. **Proof**:

- As before, edges have two sides (s = 2e)
- Bipartite means no triangles! So $s \ge 4f$
- Hence $2e \ge 4f$, so $f \le \frac{1}{2}e$
- Plug into Euler's: $v + \frac{1}{2}e \ge e + 2$
- Thus $\frac{1}{2}e+2 \leq v$, so $e \leq 2v-4$

For
$$K_{3,3}$$
, $2v - 4 = 2(6) - 4 = 8$
9 edges means non-planar!

Why K_5 and $K_{3,3}$?

Kuratowski's Theorem: A graph is non-planar iff it "contains" K_5 or $K_{3,3}$.

Why K_5 and $K_{3,3}$?

Kuratowski's Theorem: A graph is non-planar iff it "contains" K_5 or $K_{3,3}$.

Full meaning of "contains" beyond our scope Less general: non-planar if has exact copy

Back to coloring!

Theorem: Any planar graph can be 6-colored.

Back to coloring!

Theorem: Any planar graph can be 6-colored.

To prove, need following lemma: Every planar graph has a degree \leq 5 vertex.

Back to coloring!

Theorem: Any planar graph can be 6-colored.

To prove, need following lemma: Every planar graph has a degree \leq 5 vertex.

Proof:

• Previously: $e \leq 3v - 6$

Back to coloring!

Theorem: Any planar graph can be 6-colored.

To prove, need following lemma: Every planar graph has a degree \leq 5 vertex.

- Previously: $e \leq 3v 6$
- Total degree is $2e \le 6v 12$
- Thus average degree is $\leq \frac{6\nu 12}{\nu} < 6$

Back to coloring!

Theorem: Any planar graph can be 6-colored.

To prove, need following lemma: Every planar graph has a degree \leq 5 vertex.

- Previously: $e \leq 3v 6$
- Total degree is $2e \le 6v 12$
- Thus average degree is $\leq \frac{6\nu 12}{\nu} < 6$
- Not every vertex above average!

Theorem: Any planar graph can be 6-colored.

- Proof:
 - By induction on |V|

Theorem: Any planar graph can be 6-colored.

- By induction on |V|
- Base Case (|V| = 1): only need 1 color...

Theorem: Any planar graph can be 6-colored.

- By induction on |V|
- Base Case (|V| = 1): only need 1 color...
- Suppose true for graphs on k vertices
- Take G on k+1 vertices

Theorem: Any planar graph can be 6-colored.

- By induction on |V|
- Base Case (|V| = 1): only need 1 color...
- Suppose true for graphs on k vertices
- Take G on k+1 vertices
- Remove v st deg(v) \leq 5, 6-color result

Theorem: Any planar graph can be 6-colored.

- By induction on |V|
- Base Case (|V| = 1): only need 1 color...
- Suppose true for graphs on k vertices
- Take G on k+1 vertices
- Remove v st deg(v) \leq 5, 6-color result
- v has \leq 5 neighbors, so color available!

Break time-be social!

Break time-be social!

Today's Discussion Question:

What vegetable or fruit would you be and why?

Theorem: Any planar graph can be 5-colored.

Theorem: Any planar graph can be 5-colored.

- Same idea as 6-color theorem
- \blacktriangleright Remove deg \leq 5 vertex, color, add back

Theorem: Any planar graph can be 5-colored.

- Same idea as 6-color theorem
- Remove deg \leq 5 vertex, color, add back
- If deg \leq 4, color remaining, so fine
- If two neighbors same color, again fine

Theorem: Any planar graph can be 5-colored.

- Same idea as 6-color theorem
- Remove deg \leq 5 vertex, color, add back
- If deg \leq 4, color remaining, so fine
- If two neighbors same color, again fine
- Problem if all 5 neighbors have different color
- Need to modify original coloring to fix!

Will consider color connected components²

 $^2 {\sf This}$ is totally not a term I just made up *looks around shiftily*

Will consider *color connected components*²

Idea: remove all verts not colored c_1 or c_2 from GFor vertex v colored c_1 or c_2 , CCC(G, v, c_1 , c_2) is connected component in result that contains v

²This is totally not a term I just made up *looks around shiftily*

Will consider *color connected components*²

Idea: remove all verts not colored c_1 or c_2 from GFor vertex v colored c_1 or c_2 , CCC(G, v, c_1 , c_2) is connected component in result that contains v

²This is totally not a term I just made up *looks around shiftily*

Will consider *color connected components*²

Idea: remove all verts not colored c_1 or c_2 from GFor vertex v colored c_1 or c_2 , CCC(G, v, c_1 , c_2) is connected component in result that contains v

Claim: can reverse colors in any CCC and be fine

²This is totally not a term I just made up *looks around shiftily*

Fix a planar drawing and recursive coloring:

Fix a planar drawing and recursive coloring:

Try to change c_5 to c_3

Fix a planar drawing and recursive coloring:

Try to change c_5 to c_3

Fix a planar drawing and recursive coloring:

Try to change c_5 to c_3 Try to change c_4 to c_2

Fix a planar drawing and recursive coloring:

Try to change c_5 to c_3 Try to change c_4 to c_2

Fix a planar drawing and recursive coloring:

Try to change c_5 to c_3 Try to change c_4 to c_2

Bringing It Back

This map can be colored with 5 colors!

Bringing It Back

This map can be colored with 5 colors!

In fact, is a 4-color theorem as well. Computer aided proof, not yet human readable.

One more special type of graph: hypercubes!

One more special type of graph: hypercubes!

Intuition: few edges, but "hard" to cut in half Good design for communication network!

One more special type of graph: hypercubes!

Intuition: few edges, but "hard" to cut in half Good design for communication network!

Formal definition: *n*-dimensional hypercube has vertex for each length-*n* bitstring Edge between vertices iff they differ in one bit

One more special type of graph: hypercubes!

Intuition: few edges, but "hard" to cut in half Good design for communication network!

Formal definition: *n*-dimensional hypercube has vertex for each length-*n* bitstring Edge between vertices iff they differ in one bit

Alernately define hypercubes by recursion:

Alernately define hypercubes by recursion:

0-dimensional hypercube is single vertex

Alernately define hypercubes by recursion:

0-dimensional hypercube is single vertex

(n + 1)-dim hypercube is two copies of *n*-dim Corresponding vertices connected by edges

Alernately define hypercubes by recursion:

0-dimensional hypercube is single vertex

(n + 1)-dim hypercube is two copies of *n*-dim Corresponding vertices connected by edges

Claim: hypercube is "hard" to cut in half. What does this mean, formally?

Claim: hypercube is "hard" to cut in half. What does this mean, formally?

Theorem: To separate hypercube into sets S_1 and S_2 , need to cut $\geq \min(|S_1|, |S_2|)$ edges.

Claim: hypercube is "hard" to cut in half. What does this mean, formally?

Theorem: To separate hypercube into sets S_1 and S_2 , need to cut $\geq \min(|S_1|, |S_2|)$ edges.

Intuition: maybe easy to cut off a few vertices, hard to cut off a lot.

Claim: hypercube is "hard" to cut in half. What does this mean, formally?

Theorem: To separate hypercube into sets S_1 and S_2 , need to cut $\geq \min(|S_1|, |S_2|)$ edges.

Intuition: maybe easy to cut off a few vertices, hard to cut off a lot.

Proof in notes if you're interested ;)

Fin

Next time: modular arithmetic!