The Catalan Numbers

CS 70, Summer 2019

Bonus Lecture, 7/19/19

Parentheses

How many ways can I **properly** arrange:

- Zero pairs of parentheses?
- ► One pair of parentheses?
- ► Two pairs of parentheses?
- ► Three pairs of parentheses?
- ► Four pairs of parentheses? Already getting hard...

Five Pairs?

Catalan Number Formula

The *n*-th Catalan number is given by:

$$C_n = \frac{1}{n+1} \cdot \binom{2n}{n}$$

We'll see how to get this formula later...

Why is C_n always an integer? We can rewrite:

$$C_n = \binom{2n}{n} - \binom{2n}{n+1}$$

Recursion In Parentheses

The first character will always be a **left parenthesis**.

- 1. Identify the **right parenthesis** it is matched with.
- **2.** What goes **inside** the first left parenthesis and its partner? How many of them?

3. What goes **after** its partner? How many of them?

Recursion In Parentheses: Count By Cases

Cases based on **how many pairs of parentheses inside**:

► Case 0: No pairs inside.

► Case 1: One pair inside.

Case 2: Two pairs inside.

Case *i*: *i* pairs inside.

Catalan Number Recurrence

The *n*-th Catalan number is also given by:

$$C_n = \sum_{i=0}^{n-1} C_i \cdot C_{(n-1)-i}$$

If an object satisfies this recurrence, it can be counted by $C_n!$

Example: **Full** binary trees with (n + 1) leaves

Def: Every vertex either has 2 children, or no children

Other Items Counted By Recurrence

Example: **Triangulations** in (n+2)-sided polygons

Counting Using Bijections

Example: **Bitstrings** of n 0's and n 1's where, if we read from left to right, there are always more 0's than 1's.

Q: Bijection to something that we already counted?

Counting Using Bijections

Example: **Lattice paths** on an $n \times n$ grid which do not cross above the diagonal.

Q: Bijection to something that we already counted?

Deriving the Formula

Let's study the formula again...

$$C_n = \frac{1}{n+1} \cdot \binom{2n}{n}$$

▶ What kinds of objects does $\binom{2n}{n}$ count?

▶ What does the $\frac{1}{n+1}$ clue into?

Exceedence

Exceedence: the number of **vertical edges** in the lattice path that lie **above the diagonal**

Exceedence = 0:

How many possible values are there for exceedence?

Bijection Between Exceedences

Goal: We can show that 0-exceedence paths are counted by C_n if:

$$\#\{0-\text{exc.}\} = \#\{1-\text{exc.}\} = \#\{2-\text{exc.}\} = \dots = \#\{n-\text{exc.}\}$$

Want a bijection (read: invertible transformation) from

$$\#\{(i+1)\text{-exc.}\}\$$
to $\{i\text{-exc.}\}$

Bijection Between Exceedences

- ► Follow path **under diagonal** until it first goes above the diagonal. (It can be in the corner!)
- ► Mark the intersection with the diagonal.
- ► Continue following (now **above the diagonal**) until we hit the diagonal again. Mark edge *e* that occurs before this hit
- Swap the portion before e and the portion after e.

Summary

- ► All about the **recursive structure**
 - Complicated objects actually have nice structure
 - ▶ Reduces problem to a smaller version of itself
- ► Can also define **bijections** between interesting objects
 - Lets you count a huge variety of objects