The Catalan Numbers

CS 70, Summer 2019

Bonus Lecture, 7/19/19

Parentheses

How many ways can I properly arrange:

- Zero pairs of parentheses?
- One pair of parentheses?
- Two pairs of parentheses?
- Three pairs of parentheses?
- Four pairs of parentheses? Already getting hard...

Five Pairs?

Catalan Number Formula

The n-th Catalan number is given by:

$$
C_{n}=\frac{1}{n+1} \cdot\binom{2 n}{n}
$$

We'll see how to get this formula later...
Why is C_{n} always an integer? We can rewrite:

$$
C_{n}=\binom{2 n}{n}-\binom{2 n}{n+1}
$$

Recursion In Parentheses

The first character will always be a left parenthesis.

1. Identify the right parenthesis it is matched with.
2. What goes inside the first left parenthesis and its partner? How many of them?
3. What goes after its partner? How many of them?

Recursion In Parentheses: Count By Cases

Cases based on how many pairs of parentheses inside:

- Case 0: No pairs inside.
- Case 1: One pair inside.
- Case 2: Two pairs inside.
- Case $i: i$ pairs inside.

Catalan Number Recurrence

The n-th Catalan number is also given by:

$$
C_{n}=\sum_{i=0}^{n-1} C_{i} \cdot C_{(n-1)-i}
$$

If an object satisfies this recurrence, it can be counted by C_{n} !

Example: Full binary trees with $(n+1)$ leaves
Def: Every vertex either has 2 children, or no children

Other Items Counted By Recurrence

Example: Triangulations in $(n+2)$-sided polygons

Counting Using Bijections

Example: Bitstrings of $n 0$'s and $n 1$'s where, if we read from left to right, there are always more 0's than 1's.

Q: Bijection to something that we already counted?

Counting Using Bijections

Example: Lattice paths on an $n \times n$ grid which do not cross above the diagonal.

Q: Bijection to something that we already counted?

Deriving the Formula

Let's study the formula again...

$$
C_{n}=\frac{1}{n+1} \cdot\binom{2 n}{n}
$$

- What kinds of objects does $\binom{2 n}{n}$ count?
- What does the $\frac{1}{n+1}$ clue into?

Exceedence

Exceedence: the number of vertical edges in the lattice path that lie above the diagonal

Exceedence $=0$:

How many possible values are there for exceedence?

Bijection Between Exceedences

Goal: We can show that 0-exceedence paths are counted by C_{n} if:

$$
\#\{0-\mathrm{exc} .\}=\#\{1 \text {-exc. }\}=\#\{2 \text {-exc. }\}=\ldots=\#\{n \text {-exc. }\}
$$

Want a bijection (read: invertible transformation) from

$$
\#\{(i+1) \text {-exc. }\} \text { to }\{i \text {-exc. }\}
$$

Bijection Between Exceedences

- Follow path under diagonal until it first goes above the diagonal. (It can be in the corner!)
- Mark the intersection with the diagonal.
- Continue following (now above the diagonal) until we hit the diagonal again. Mark edge e that occurs before this hit
- Swap the portion before e and the portion after e.

Summary

- All about the recursive structure
- Complicated objects actually have nice structure
- Reduces problem to a smaller version of itself
- Can also define bijections between interesting objects
- Lets you count a huge variety of objects

